题目内容

已知定义域为[0,1]的函数f(x)同时满足:①f(1)=3;②f(x)≥2恒成立;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
(1)求f(x)的最大值和最小值;
(2)试比较f(
1
2n
)与
1
2n
+2的大小(n∈N);
(3)若对任意x∈(0,1],总存在n(n∈N),使得
1
2n+1
<x≤
1
2n
,求证:对任意x∈(0,1],都有f(x)≤2x+2.
考点:数列与不等式的综合
专题:综合题,不等式的解法及应用
分析:(1)对于抽象函数的最值问题,可考虑此函数的单调性;
(2)由题中条件:f(x1+x2)≥f(x1)+f(x2)-2,令x1=x2=
1
2n
,得f(
1
2n
+
1
2n
)≥f(
1
2n
)+f(
1
2n
)-2
.即f(
1
2n-1
)≥2f(
1
2n
)-2
,利用它进行放缩,可证得答案;
(3)利用f(x)≤f(
1
2n
)≤
1
2n
+2
,即可证明.
解答: (1)解:任取0≤x1<x2≤1,则0<x2-x1<1,且f(x2-x1)≥2.
于是f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2.
所以f(x2)-f(x1)≥f(x2-x1)-2≥0.
所以f(x2)≥f(x1).所以f(0)≤f(x)≤f(1).
由③,取x1=x2=0,得f(0)≤2;由②,得f(0)≥2;
所以f(0)=2.又f(1)=3,
所以,f(x)的最小值为2,最大值为3.…(4分)
(2)解:在③中,令x1=x2=
1
2n
,得f(
1
2n
+
1
2n
)≥f(
1
2n
)+f(
1
2n
)-2

f(
1
2n-1
)≥2f(
1
2n
)-2
,变形为f(
1
2n
)-2≤
1
2
[f(
1
2n-1
)-2]

于是f(
1
2n
)-2≤
1
2
[f(
1
2n-1
)-2]
1
22
[f(
1
2n-2
)-2]
≤…
1
2n
[f(
1
20
)-2]=
1
2n

所以f(
1
2n
)≤
1
2n
+2
.…(9分)
(3)证明:对任意满足x∈(0,1],总存在n(n∈N),使得
1
2n+1
<x≤
1
2n

于是f(x)≤f(
1
2n
)≤
1
2n
+2

2x+2>2×
1
2n+1
+2=
1
2n
+2

所以f(x)≤2x+2.…(14分)
点评:本题考查了抽象函数的性质,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网