题目内容
| π |
| 6 |
| π |
| 2 |
(1)若cos(α+
| π |
| 3 |
| 11 |
| 13 |
(2)若B(x2,y2)也是单位圆O上的点,且∠AOB=
| π |
| 3 |
考点:两角和与差的正弦函数,任意角的三角函数的定义
专题:三角函数的求值
分析:(1)由三角函数的定义有x1=cosα,求得sin(α+
)=
,根据x1=cosα=cos[(α+
)-
],利用两角差的余弦公式计算求得结果.
(2)求得得S1=
x1y1=
cosαsinα=
sin2α,S2=-
sin(2α+
).可得f(α)=S1+S2=
sin2α-
sin(2α+
),化简为
sin(2α-
).再根据 2α-
的范围,利用正弦函数的定义域和值域求得函数f(α)取得最大值
| π |
| 3 |
4
| ||
| 13 |
| π |
| 3 |
| π |
| 3 |
(2)求得得S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 2π |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 2π |
| 3 |
| ||
| 4 |
| π |
| 6 |
| π |
| 6 |
解答:
解:(1)由三角函数的定义有x1=cosα,
∵cos(α+
)=-
,α∈(
,
),∴sin(α+
)=
,
∴x1=cosα=cos[(α+
)-
]=cos(α+
)cos
+sin(α+
)sin
=-
•
+
•
=
.
(2)由y1=sinα,得S1=
x1y1=
cosαsinα=
sin2α.
由定义得x2=cos(α+
),y2=sin(α+
),
又 由α∈(
,
),得α+
∈(
,
),
于是,S2=-
x2y2=-
cos(α+
)sin(α+
)=-
sin(2α+
).
∴f(α)=S1+S2=
sin2α-
sin(2α+
)=
sin2α-
(sin2αcos
+cos2αsin
)
=
sin2α-
cos2α=
(
sin2α-
cos2α)=
sin(2α-
).
再根据 2α-
∈(
,
),可得当2α-
=
,即α=
时,函数f(α)取得最大值
.
∵cos(α+
| π |
| 3 |
| 11 |
| 13 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
4
| ||
| 13 |
∴x1=cosα=cos[(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 11 |
| 13 |
| 1 |
| 2 |
4
| ||
| 13 |
| ||
| 2 |
| 1 |
| 26 |
(2)由y1=sinα,得S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
由定义得x2=cos(α+
| π |
| 3 |
| π |
| 3 |
又 由α∈(
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
于是,S2=-
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 4 |
| 2π |
| 3 |
∴f(α)=S1+S2=
| 1 |
| 4 |
| 1 |
| 4 |
| 2π |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 2π |
| 3 |
| 2π |
| 3 |
=
| 3 |
| 8 |
| ||
| 8 |
| ||
| 4 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 4 |
| π |
| 6 |
再根据 2α-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| ||
| 4 |
点评:本题主要考查任意角的三角函数的定义,两角和差的正弦公式、余弦公式,正弦函数的定义域和值域,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=
(a∈R),则下列结论正确的是( )
|
| A、?a∈R,f(x)在R上单调递减 |
| B、?A∈R,f(x)的最小值为f(a) |
| C、?a∈R,f(x)有极大值和极小值 |
| D、?a∈R,f(x)有唯一零点 |
设变量x,y满足约束条件
,则目标函数z=2x-3y的最小值为( )
|
| A、-4 | B、-2 | C、-1 | D、5 |