题目内容

5.已知函数f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)是增函数,且f(-1)=0则不等式f(x)<0的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(0,1)

分析 根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.

解答 解:∵偶函数f(x)在[0,+∞)上为增函数,f(-1)=0,
∴f(-1)=f(1)=0,
则函数f(x)对应的图象如图:
则f(x)<0的解为-1<x<1,
即不等式的解集为(-1,1),
故选:A.

点评 本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网