题目内容
10.经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为45°,则y的值为( )| A. | -1 | B. | -3 | C. | 0 | D. | 2 |
分析 由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列式求得y的值.
解答 解:经过两点A(4,2y+1),B(2,-3)的直线的斜率为k=$\frac{-3-2y-1}{2-4}=y+2$.
又直线的倾斜角为45°,
∴y+2=tan45°=1,即y=-1.
故选:A.
点评 本题考查直线的倾斜角,考查了直线倾斜角与斜率的关系,是基础题.
练习册系列答案
相关题目
11.如图,是函数y=f(x)=sin(ω1x+φ1)和y=g(x)=sin(ω2x+φ2)在一个周期上的图象,为了得到y=f(x)的图象,只要将y=g(x)的图象上所有的点( )

| A. | 向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变 | |
| B. | 向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变 | |
| C. | 向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变 | |
| D. | 向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变 |
8.在半径为R的球内放入5个球,其中有4个球大小相等,两两相外切且均与大球相内切,另一个小球与这四个球均相外切,则这个小球半径为( )
| A. | (3-2$\sqrt{2}$)R | B. | (4-2$\sqrt{3}$)R | C. | (5-2$\sqrt{6}$)R | D. | (6-2$\sqrt{7}$)R |
5.已知函数f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)是增函数,且f(-1)=0则不等式f(x)<0的解集为( )
| A. | (-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-∞,-1)∪(0,1) | D. | (-1,0)∪(0,1) |
20.
已知A,B,C,D是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)一个周期内的图象上的四个点,如图所示,$A(\frac{π}{6},0)$,B为y轴上的点,D为图象上的最低点,C为该函数图象的一个对称中心,B与E关于点C对称,$\overrightarrow{ED}$在x轴上的投影为$\frac{π}{12}$,则$f(-\frac{π}{6})$的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |