题目内容

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(0≤θ≤2π)中,点P(2,
4
) 到直线ρcos(θ-
π
4
)=
2
的距离等于
 
考点:简单曲线的极坐标方程,点到直线的距离公式,点的极坐标和直角坐标的互化
专题:计算题
分析:化点、直线的极坐标为直角坐标,利用点到直线的距离公式,我们可以得到结论.
解答: 解:点P(2,
4
)的直角坐标为(-
2
,-
2

直线ρcos(θ-
π
4
)=
2
的直角坐标方程为:x+y-2=0
利用点到直线的距离公式可得:d=
|-
2
-
2
-2|
2
=2+
2

故答案为:2+
2
点评:极坐标中的问题,通常是转化为直角坐标,进行解决,掌握转化公式是解决这类问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网