ÌâÄ¿ÄÚÈÝ
ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2011£¬¹«±Èq=-
£¬ÊýÁÐ{an}ǰnÏîºÍ¼ÇΪSn£¬Ç°nÏî»ý¼ÇΪTn£®
£¨1£©Ö¤Ã÷£ºS2¡ÜSn¡ÜS1£»
£¨2£©ÅжÏTnÓëTn+1µÄ´óС£¬²¢ÇónΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©Ö¤Ã÷£ºÈôÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬Ôò×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ»ÈôËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´Î¼ÇΪd1£¬d2£¬¡£¬dn£¬ÔòÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
| 1 |
| 2 |
£¨1£©Ö¤Ã÷£ºS2¡ÜSn¡ÜS1£»
£¨2£©ÅжÏTnÓëTn+1µÄ´óС£¬²¢ÇónΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©Ö¤Ã÷£ºÈôÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬Ôò×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ»ÈôËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´Î¼ÇΪd1£¬d2£¬¡£¬dn£¬ÔòÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ,µÈ²îÊýÁеÄÐÔÖÊ,µÈ±ÈÊýÁеÄÐÔÖÊ
רÌ⣺×ÛºÏÌâ
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªSn=S1+
=S1-
a1[1-(-
)n-1]¡ÜS1£¬ÓÉ´ËÄܹ»Ö¤Ã÷S2¡ÜSn¡ÜS1£®
£¨2£©ÓÉ
=
=|an+1|=
£¬Öª|Tn|max=|T11|£¬ÓÉ´ËÄܹ»ÍƵ¼³önΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£®
£¨3£©ÓÉan=2011£¨-
£©n-1£¬Öª|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º£®Óɴ˽øÐзÖÀàÌÖÂÛ£¬Äܹ»Ö¤Ã÷ÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
a2[1-(-
| ||
1-(-
|
| 1 |
| 3 |
| 1 |
| 2 |
£¨2£©ÓÉ
| |Tn+1| |
| |Tn| |
| a1a2¡anan+1 |
| a1a2¡an |
| 2011 |
| 2n |
£¨3£©ÓÉan=2011£¨-
| 1 |
| 2 |
½â´ð£º
£¨1£©Ö¤£ºSn=S1+
=S1-
a1[1-(-
)n-1]¡ÜS1£¬
µ±n=1ʱ£¬µÈºÅ³ÉÁ¢¡2·Ö
Sn=S2+
=S2+
a1[1-(-
)n-2]¡ÝS2£¬
µ±n=2ʱ£¬µÈºÅ³ÉÁ¢
¡àS2¡ÜSn¡ÜS1£®¡4·Ö
£¨2£©½â£º¡ß
=
=|an+1|=
£¬
¡àµ±n¡Ü10ʱ£¬|Tn+1|£¾|Tn|£¬
µ±n¡Ý11ʱ£¬|Tn+1|£¼|Tn|£¬
¹Ê|Tn|max=|T11|¡7·Ö
ÓÖT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬
¡àTnµÄ×î´óÖµÊÇT9ºÍT12ÖеĽϴóÕߣ¬
¡ß
=a10a11a12=[2011£¨-
£©10]3£¾1£¬
¡àT12£¾T9
Òò´Ëµ±n=12ʱ£¬Tn×î´ó£®¡10·Ö
£¨3£©Ö¤£º¡ßan=2011£¨-
£©n-1£¬
¡à|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º
¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬
Ôòak+1+ak=a1(-
)k+a1(-
)k-1=
£¬2ak+2=2a1(-
)k+1=
£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak+1£¬ak+2£¬ak³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak+1=a1[(-
)k+1-(-
)k]=
¡12·Ö
¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬
Ôòak+1+ak=a1(-
)k+a1(-
)k-1=-
£¬2ak+2=2a1(-
)k+1=-
£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak£¬ak+2£¬ak+1³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak=a1[(-
)k+1-(-
)k-1]=
¡14·Ö
×ÛÉÏ¿ÉÖª£¬{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬ÇÒdk=
¡ß
=2£¬
¡àÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®¡16·Ö£®
a2[1-(-
| ||
1-(-
|
| 1 |
| 3 |
| 1 |
| 2 |
µ±n=1ʱ£¬µÈºÅ³ÉÁ¢¡2·Ö
Sn=S2+
a3[1-(-
| ||
1-(-
|
| 1 |
| 6 |
| 1 |
| 2 |
µ±n=2ʱ£¬µÈºÅ³ÉÁ¢
¡àS2¡ÜSn¡ÜS1£®¡4·Ö
£¨2£©½â£º¡ß
| |Tn+1| |
| |Tn| |
| a1a2¡anan+1 |
| a1a2¡an |
| 2011 |
| 2n |
¡àµ±n¡Ü10ʱ£¬|Tn+1|£¾|Tn|£¬
µ±n¡Ý11ʱ£¬|Tn+1|£¼|Tn|£¬
¹Ê|Tn|max=|T11|¡7·Ö
ÓÖT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬
¡àTnµÄ×î´óÖµÊÇT9ºÍT12ÖеĽϴóÕߣ¬
¡ß
| T12 |
| T9 |
| 1 |
| 2 |
¡àT12£¾T9
Òò´Ëµ±n=12ʱ£¬Tn×î´ó£®¡10·Ö
£¨3£©Ö¤£º¡ßan=2011£¨-
| 1 |
| 2 |
¡à|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º
¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬
Ôòak+1+ak=a1(-
| 1 |
| 2 |
| 1 |
| 2 |
| a1 |
| 2k |
| 1 |
| 2 |
| a1 |
| 2k |
¡àak+1+ak=2ak+2£¬Òò´Ëak+1£¬ak+2£¬ak³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak+1=a1[(-
| 1 |
| 2 |
| 1 |
| 2 |
| 3a1 |
| 2k+1 |
¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬
Ôòak+1+ak=a1(-
| 1 |
| 2 |
| 1 |
| 2 |
| a1 |
| 2k |
| 1 |
| 2 |
| a1 |
| 2k |
¡àak+1+ak=2ak+2£¬Òò´Ëak£¬ak+2£¬ak+1³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak=a1[(-
| 1 |
| 2 |
| 1 |
| 2 |
| 3a1 |
| 2k+1 |
×ÛÉÏ¿ÉÖª£¬{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬ÇÒdk=
| 3a1 |
| 2k+1 |
¡ß
| dn-1 |
| dn |
¡àÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®¡16·Ö£®
µãÆÀ£º±¾Ì⿼²éÊýÁС¢²»µÈʽ֪ʶ£¬¿¼²é»¯¹éÓëת»¯¡¢·ÖÀàÓëÕûºÏµÄÊýѧ˼Ï룬ÅàÑøÑ§ÉúµÄ³éÏó¸ÅÀ¨ÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦ºÍ´´ÐÂÒâʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑ֪ȫ¼¯I=Z£¬¼¯ºÏA={x|x=2k+1£¬k¡ÊZ}£¬B={x|x=4k+1£¬k¡ÊZ}£¬ÔòÓУ¨¡¡¡¡£©
| A¡¢I=£¨CIA£©¡ÈB |
| B¡¢I=£¨CIB£©¡ÈB |
| C¡¢I=£¨CIA£©¡È£¨CIB£© |
| D¡¢I=A¡ÈB |
ÓÉÖ±Ïßy=x-3ÉϵĵãÏòÔ²£¨x+2£©2+£¨y-3£©2=1ÒýÇÐÏߣ¬ÔòÇÐÏß³¤µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢4
| ||
C¡¢
| ||
D¡¢
|