ÌâÄ¿ÄÚÈÝ
20£®×ÔÖ÷ÕÐÉú£¬ÊǸßУѡ°Î¼ȡ¹¤×÷¸Ä¸ïµÄÖØÒª»·½Ú£¬Í¨¹ý¸ß¿¼×ÔÖ÷ÕÐÉú±ÊÊÔºÍÃæÊÔÖ®ºó£¬¿ÉÒԵõ½ÏàÓ¦µÄ¸ß¿¼½µ·ÖÕþ²ß£»Ä³¸ßÖиßһѧÉú¹²ÓÐ1000ÈË£¬ÆäÖгÇÌî³õÖбÏÒµÉú750Ãû£¨³ÆÎª¡°³ÇÌîÉú¡°£©£¬Å©´å³õÖбÏÒµÉú250ÈË£¨³ÆÎª¡°Å©´åÉú¡°£©£»ÎªÁËÃþÇåѧÉúÊÇ·ñÔ¸Òâ²Î¼Ó×ÔÖ÷ÕÐÉú£¬ÒԱ㰲ÅÅ×ÔÖ÷ÕÐÉúÅàѵ£¬Äâ²ÉÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡100ÃûѧÉú½øÐе÷²é£»£¨1£©ÊÔÍê³ÉÏÂÁÐ2¡Á2Áª±í£¬²¢·ÖÎöÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕ˵¡°ÊÇ·ñÔ¸Òâ²Î¼Ó×ÔÖ÷ÕÐÉú¡°ÓëÉúÔ´Óйأ®
| Ô¸Òâ²Î¼Ó | ²»Ô¸Òâ²Î¼Ó | ºÏ¼Æ | |
| ³ÇÌîÉú | 50 | 25 | 75 |
| Å©´åÉú | 10 | 15 | 25 |
| ºÏ¼Æ | 60 | 40 | 100 |
¢Ù¶ÔÓÚÒ»µÀ²»ÍêÈ«»áµÄÌ⣬Ç󡰸߸»Ë§¡±µÃ·ÖµÄ¾ùÖµE£¨s£©£»
¢ÚÊÔÇ󡰸߸»Ë§¡±ÔÚ±¾´ÎÃþµ×¿¼ÊÔÖÐ×ܵ÷ֵÄÊýѧÆÚÍû£®
²Î¿¼Êý¾Ý£º
| P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨1£©¸ù¾ÝÌâÒâÌîд2¡Á2ÁÐÁª±í£¬¼ÆËãK2£¬¶ÔÕÕÊý±íµÃ³ö½áÂÛ£»
£¨2£©¢ÙÓÉSµÄËùÓпÉÄÜȡֵ¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ¼´¿É£»
¢Ú¼ÆËã¶ÔÓ¦µÄ·Ö²¼ÁÐÓëÆÚÍûÖµ¼´¿É£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâÌîд2¡Á2ÁÐÁª±íÈçÏ£º
| ÀûÓÃʱ¼ä³ä·Ö | ÀûÓÃʱ¼ä²»³ä·Ö | ×Ü¼Æ | |
| ×ß¶ÁÉú | 50 | 25 | 75 |
| סËÞÉú | 10 | 15 | 25 |
| ×Ü¼Æ | 60 | 40 | 100 |
ÓÉÓÚK2£¾3.841£¬ËùÒÔÓÐ95%µÄ°ÑÎÕÈÏΪ¡°ÊÇ·ñÔ¸Òâ²Î¼Ó×ÔÖ÷ÕÐÉú¡°ÓëÉúÔ´Óйأ»¡£¨6·Ö£©
£¨2£©¢ÙSµÄËùÓпÉÄÜȡֵΪ6£¬12£¬18ÇÒP£¨S=6£©=$\frac{1}{2}$£¬P£¨S=12£©=$\frac{1}{3}$£¬P£¨S=18£©=$\frac{1}{6}$£¬
E£¨S£©=6¡Á$\frac{1}{2}$+12¡Á$\frac{1}{3}$+18¡Á$\frac{1}{6}$=10£¬
¼´¡°¸ß¸»Ë§¡±µÃ·ÖµÄ¾ùÖµ10·Ö¡£¨8·Ö£©
¢ÚÉè²»ÍêÈ«»áµÄ2µÀÌâµÄ×îºóµÃ·ÖΪX£¬×ܵ÷ÖΪY£¬ÔòY=60+X£»
XµÄËùÓпÉÄÜȡֵΪ12£¬18£¬24£¬30£¬36£»
P£¨X=12£©=$\frac{1}{2}$¡Á$\frac{1}{2}$=$\frac{1}{4}$£¬
P£¨X=18£©=2¡Á$\frac{1}{2}$¡Á$\frac{1}{3}$=$\frac{1}{3}$£¬
P£¨X=24£©=$\frac{1}{3}$¡Á$\frac{1}{3}$+2¡Á$\frac{1}{2}$¡Á$\frac{1}{6}$=$\frac{5}{18}$£¬
P£¨X=30£©=2¡Á$\frac{1}{3}$¡Á$\frac{1}{6}$=$\frac{1}{9}$£¬
P£¨X=36£©=$\frac{1}{6}$¡Á$\frac{1}{6}$=$\frac{1}{36}$£¬
¡àEX=12¡Á$\frac{1}{4}$+18¡Á$\frac{1}{3}$+24¡Á$\frac{5}{18}$+30¡Á$\frac{1}{9}$+36¡Á$\frac{1}{36}$=20£¬
EY=60+EX=80£»
¡à¡°¸ß¸»Ë§¡±ÔÚ±¾´ÎÃþµ×¿¼ÊÔÖÐ×ܵ÷ֵÄÊýѧÆÚÍûΪ80·Ö£»
£¨Èô¿¼ÉúÓÃÆäËü·½·¨µÃµ½ÕýÈ·½á¹ûͬÑù¸³·Ö£©¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓë¹Åµä¸ÅÐ͵ĸÅÂÊÓë·Ö²¼ÁС¢ÆÚÍûÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®
Èçͼ£¬¸ø¶¨ÓÉ10¸öµã£¨ÈÎÒâÏàÁÚÁ½µã¾àÀëΪ1£¬£©×é³ÉµÄÕýÈý½ÇÐεãÕó£¬ÔÚÆäÖÐÈÎÒâÈ¡Èý¸öµã£¬ÒÔÕâÈý¸öµãΪ¶¥µã¹¹³ÉµÄÕýÈý½ÇÐεĸöÊýÊÇ£¨¡¡¡¡£©
| A£® | 12 | B£® | 13 | C£® | 15 | D£® | 16 |
11£®Å×ÎïÏßy2=20xµÄ½¹µãµ½×¼ÏߵľàÀëÊÇ£¨¡¡¡¡£©
| A£® | 5 | B£® | 10 | C£® | 15 | D£® | 20 |
8£®Èç¹û·½³ÌAx+By+C=0±íʾµÄÖ±ÏßÊÇxÖᣬÔòA¡¢B¡¢CÂú×㣨¡¡¡¡£©
| A£® | A•C=0 | B£® | B¡Ù0 | C£® | B¡Ù0ÇÒA=C=0 | D£® | A•C=0ÇÒB¡Ù0 |
5£®Èçͼ£¬ÕýËÄÃæÌåABCDµÄÀⳤΪ1£¬µãEÊÇÀâCDµÄÖе㣬Ôò$\overrightarrow{AE}$•$\overrightarrow{AB}$=£¨¡¡¡¡£©

| A£® | -$\frac{1}{4}$ | B£® | -$\frac{1}{2}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{2}$ |
9£®ÔÚ¡÷ABCÖУ¬a=2£¬$B=\frac{¦Ð}{3}$£¬¡÷ABCµÄÃæ»ýµÈÓÚ$\frac{\sqrt{3}}{2}$£¬ÔòbµÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{3}}{2}$ | B£® | 1 | C£® | $\sqrt{3}$ | D£® | 2 |