题目内容

12.求证:tan$\frac{π}{7}$tan$\frac{2π}{7}$tan$\frac{3π}{7}$=$\sqrt{7}$.

分析 分别求出cos$\frac{π}{7}cos\frac{2π}{7}cos\frac{3π}{7}$与$sin\frac{π}{7}sin\frac{2π}{7}sin\frac{3π}{7}$的值,由商的关系求得答案.

解答 证明:∵cos$\frac{π}{7}cos\frac{2π}{7}cos\frac{3π}{7}$=$-cos\frac{π}{7}cos\frac{2π}{7}cos\frac{4π}{7}$
=$\frac{-2sin\frac{π}{7}cos\frac{π}{7}cos\frac{2π}{7}cos\frac{4π}{7}}{2sin\frac{π}{7}}=\frac{-sin\frac{2π}{7}cos\frac{2π}{7}cos\frac{4π}{7}}{2sin\frac{π}{7}}$
=$\frac{-sin\frac{4π}{7}cos\frac{4π}{7}}{4sin\frac{π}{7}}=\frac{-sin\frac{8π}{7}}{8sin\frac{π}{7}}=\frac{1}{8}$,
设t=$sin\frac{π}{7}sin\frac{2π}{7}sin\frac{3π}{7}$,则${t}^{2}=si{n}^{2}\frac{π}{7}si{n}^{2}\frac{2π}{7}si{n}^{2}\frac{3π}{7}$,
∴$8{t}^{2}=(1-cos\frac{2π}{7})(1-cos\frac{4π}{7})(1-cos\frac{6π}{7})$
=$1-(cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7})-$$cos\frac{2π}{7}cos\frac{4π}{7}cos\frac{6π}{7}$
+$(cos\frac{2π}{7}cos\frac{4π}{7}+cos\frac{2π}{7}cos\frac{6π}{7}+cos\frac{4π}{7}cos\frac{6π}{7})$
=$\frac{3}{8}-(cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7})$,
而$cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7}$=$\frac{2sin\frac{π}{7}cos\frac{2π}{7}+2sin\frac{π}{7}cos\frac{4π}{7}+2sin\frac{π}{7}cos\frac{6π}{7}}{2sin\frac{π}{7}}$
=$\frac{sin\frac{3π}{7}-sin\frac{π}{7}+sin\frac{5π}{7}-sin\frac{3π}{7}+sinπ-sin\frac{5π}{7}}{2sin\frac{π}{7}}$=$\frac{-sin\frac{π}{7}}{2sin\frac{π}{7}}=-\frac{1}{2}$,
∴$8{t}^{2}=\frac{7}{8}$,又t>0,∴$t=\frac{\sqrt{7}}{8}$,
则tan$\frac{π}{7}$tan$\frac{2π}{7}$tan$\frac{3π}{7}$=$\frac{sin\frac{π}{7}sin\frac{2π}{7}sin\frac{3π}{7}}{cos\frac{π}{7}cos\frac{2π}{7}cos\frac{3π}{7}}=\frac{\frac{\sqrt{7}}{8}}{\frac{1}{8}}=\sqrt{7}$.

点评 本题考查三角函数的化简求值,考查三角函数的和差化积与积化和差公式的应用,考查数学转化思想方法,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网