题目内容
设a,b,c是△ABC的边长,设l是△ABC的内心,求
+
+
的值.
| |IA|2 |
| bc |
| |IB|2 |
| ca |
| |IC|2 |
| ab |
考点:函数的值
专题:计算题,作图题,解三角形
分析:由题意,
r(a+b+c)=
bcsinA,从而求出r=
,进而表示出
=
=
=
,从而求
+
+
的值.
| 1 |
| 2 |
| 1 |
| 2 |
| bcsinA |
| a+b+c |
| |IA|2 |
| bc |
4bccos2
| ||
| (a+b+c)2 |
| 2bc(1+cosA) |
| (a+b+c)2 |
| b2+c2-a2+2bc |
| (a+b+c)2 |
| |IA|2 |
| bc |
| |IB|2 |
| ca |
| |IC|2 |
| ab |
解答:
解:如图:∵l是△ABC的内心,设l到三边的距离为r,
∴
r(a+b+c)=
bcsinA,
∴r=
,
∴|lA|2=(
•
)2,
∴
=
=
=
,
∴
+
+
=
+
+
=
=1.
∴
| 1 |
| 2 |
| 1 |
| 2 |
∴r=
| bcsinA |
| a+b+c |
∴|lA|2=(
| bcsinA |
| a+b+c |
| 1 | ||
sin
|
∴
| |IA|2 |
| bc |
4bccos2
| ||
| (a+b+c)2 |
| 2bc(1+cosA) |
| (a+b+c)2 |
| b2+c2-a2+2bc |
| (a+b+c)2 |
∴
| |IA|2 |
| bc |
| |IB|2 |
| ca |
| |IC|2 |
| ab |
| b2+c2-a2+2bc |
| (a+b+c)2 |
| c2+a2-b2+2ac |
| (a+b+c)2 |
| a2+b2-c2+2ab |
| (a+b+c)2 |
| (a+b+c)2 |
| (a+b+c)2 |
点评:本题考查了解三角形及三角函数的应用,属于中档题.
练习册系列答案
相关题目
已知实数x,y满足
,若(-1,0)是使mx+y取得最大值的可行解,则实数m的取值范围是( )
|
| A、m≤3 | ||
| B、m≤-3 | ||
C、m≥-
| ||
D、m≥
|