题目内容

设x,y满足约束条件组
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为24,则
4
a
+
6
b
的最小值为(  )
A、
8
3
B、
27
6
C、4
D、
25
6
考点:简单线性规划
专题:不等式的解法及应用
分析:已知2a+3b=6,求则
4
a
+
6
b
的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.
解答: 解:不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大24,
即4a+6b=24,即2a+3b=12,而则
4
a
+
6
b
=(
4
a
+
6
b
2a+3b
12
=
13
6
+
b
a
+
a
b
13
6
+2=
25
6
,当且仅当a=b=
12
5
取等号,
故则
4
a
+
6
b
的最小值为
25
6

故选:D.
点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网