题目内容
在区间[-1,1]内随机取两个实数x,y,则满足y≥x2-1的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:几何概型
专题:计算题,概率与统计
分析:该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.
解答:
解:由题意可得,
的区域为边长为2的正方形,面积为4,
满足y≥x2-1的区域为图中阴影部分,面积为2+
(1-x2)dx=
∴满足y≥x2-1的概率是
=
.
故选:D.
|
满足y≥x2-1的区域为图中阴影部分,面积为2+
| ∫ | 1 -1 |
| 10 |
| 3 |
∴满足y≥x2-1的概率是
| ||
| 4 |
| 5 |
| 6 |
故选:D.
点评:本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题.
练习册系列答案
相关题目
定义一种运算a?b=
,令f(x)=(3+2x-x2)?|x-t|(t为常数),且x∈[-3,3],则使函数f(x)的最大值为3的t的集合是( )
|
| A、{3,-3} |
| B、{-1,5} |
| C、{3,-1} |
| D、{-3,-1,3,5} |
已知复数z=2+i,
是z的共轭复数,则
对应的点位于( )
. |
| z |
| ||
| z |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
已知命题p:随机变量x~N(2,σ2),且p(x>3)=0.3010,则p(1≤x<2)=0.1990,命题q:若向量
,
满足|
|=1,|
|=3,
与
夹角为
,则|
+
|=
.下面结论正确的是( )
| a |
| b |
| a |
| b |
| a |
| b |
| π |
| 3 |
| a |
| b |
| 7 |
| A、(¬p)∨q是真命题 |
| B、p∨q是假命题 |
| C、p∧q是真命题 |
| D、p∧(¬q)是真命题 |
已知f(x)=
cos2x-sin2x,若y=f(x-m)(m>0)是奇函数,则m的最小值为( )
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=2sin(2x+
)的一条对称轴是( )
| π |
| 6 |
A、x=
| ||
B、x=
| ||
C、x=
| ||
D、x=
|
在(2
-
)5的二项展开式中,x的系数为( )
| x |
| 1 |
| x |
| A、-80 | B、-5 | C、10 | D、80 |