题目内容

定义一种运算a?b=
a,a≤b
b,a>b
,令f(x)=(3+2x-x2)?|x-t|(t为常数),且x∈[-3,3],则使函数f(x)的最大值为3的t的集合是(  )
A、{3,-3}
B、{-1,5}
C、{3,-1}
D、{-3,-1,3,5}
考点:二次函数的性质
专题:函数的性质及应用
分析:根据定义,先计算y=3+2x-x2在x∈[-3,3]上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.
解答: 解:y=3+2x-x2在x∈[-3,3]上的最大值为3,所以由3+2x-x2=3,解得x=2或x=0.
所以要使函数f(x)最大值为3,则根据定义可知,
当t<1时,即x=2时,|2-t|=3,此时解得t=-1.
当t>1时,即x=0时,|0-t|=3,此时解得t=3.
故t=-1或3.
故选C.
点评:本题主要考查新定义的理解和应用,利用数形结合是解决本题的关键,考查学生的分析能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网