题目内容

定义在R上的函数f(x)满足,对于任意α、β∈R,总有f(α+β)-f(α)-f(β)=2013,则下列说法正确的是(  )
A、y=f(x)-2013是偶函数
B、y=f(x)+2013是偶函数
C、y=f(x)-2013是奇函数
D、y=f(x)+2013是奇函数
考点:抽象函数及其应用,函数奇偶性的判断
专题:函数的性质及应用
分析:取α=β=0,得f(0)=-2013;再取α=x,β=-x,代入整理可得f(-x)+2013=-[f(x)-f(0)]=-[f(x)+2013],即可得到结论.
解答: 解:取α=β=0,得f(0)=-2013,
取α=x,β=-x,f(0)-f(x)-f(-x)=2013,
即f(-x)+2013=-[f(x)-f(0)]=-[f(x)+2013]
故函数f(x)+2013是奇函数.
故选:D.
点评:本题考查函数奇偶性的判断,解决抽象函数奇偶性的判断问题时采用赋值法是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网