题目内容
9.已知曲线E上的点M(x,y)到点F(2,0)的距离与到定直线x=$\frac{5}{2}$的距离之比为$\frac{2\sqrt{5}}{5}$.(I)求曲线E的轨迹方程;
(Ⅱ)若点F关于原点的对称点为F′,则是否存在经过点F的直线l交曲线E于A、B两点,且三角形F′AB的面积为$\frac{40}{21}$,若存在,求出直线l的方程;若不存在,请说明理由.
分析 (I)运用两点的距离公式和点到直线的距离公式,化简整理,可得曲线E的方程;
(Ⅱ)假设存在经过点F的直线l交曲线E于A、B两点,且三角形F′AB的面积为$\frac{40}{21}$.设直线l:x=my+2,代入椭圆方程x2+5y2=5,运用韦达定理,由三角形的面积公式可得$\frac{1}{2}$•4•|y1-y2|=$\frac{40}{21}$,化简整理计算即可得到所求直线的方程.
解答 解:(I)由题意可得$\frac{\sqrt{(x-2)^{2}+{y}^{2}}}{|x-\frac{5}{2}|}$=$\frac{2\sqrt{5}}{5}$,
移项两边平方可得,x2+y2-4x+4=$\frac{4}{5}$x2-4x+5,
即有曲线E的轨迹方程为$\frac{{x}^{2}}{5}$+y2=1;
(Ⅱ)假设存在经过点F的直线l交曲线E于A、B两点,
且三角形F′AB的面积为$\frac{40}{21}$.
由题意可得F'(-2,0),设直线l:x=my+2,
代入椭圆方程x2+5y2=5,可得
(5+m2)y2+4my-1=0,
设直线l交椭圆E于A(x1,y1)、B(x2,y2)两点,
可得y1+y2=-$\frac{4m}{5+{m}^{2}}$,y1y2=-$\frac{1}{5+{m}^{2}}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{\frac{16{m}^{2}}{(5+{m}^{2})^{2}}+\frac{4}{5+{m}^{2}}}$=$\frac{2\sqrt{5}\sqrt{1+{m}^{2}}}{5+{m}^{2}}$,
由三角形F′AB的面积为$\frac{40}{21}$,可得$\frac{1}{2}$•4•|y1-y2|=$\frac{40}{21}$,
即有$\frac{2\sqrt{5}\sqrt{1+{m}^{2}}}{5+{m}^{2}}$=$\frac{20}{21}$,解得m=±$\frac{1}{2}$,
可得存在直线l,且方程为x=±$\frac{1}{2}$y+2.
点评 本题考查轨迹方程的求法,注意运用两点的距离和点到直线的距离公式,考查存在性问题的解法,注意运用直线方程和椭圆方程联立,运用韦达定理和三角形的面积公式,考查化简整理的运算能力,属于中档题.
| A. | 0<e<$\frac{1}{5}$ | B. | $\frac{1}{5}$<e<$\frac{1}{3}$ | C. | $\frac{1}{3}$<e<1 | D. | 0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1 |
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 语文(x分) | 89 | 91 | 93 | 95 | 97 |
| 英语(y分) | 87 | 89 | 89 | 92 | 93 |
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的英语成绩高于90分的人数,求随机变量X不小于1的概率.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
测量产品中的微量元素x,y的含量(单位:微克),当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.已知该天甲厂生产的产品共有98件,如表是乙厂的5件产品的测量数据:
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
(2)用上述样本数据统计乙厂该天生产的优等品的数量;
(3)从乙厂抽取的上述5件产品中,随机抽取2件.求抽取的2件产品中优等品的件数X的分布列及数学期望.
| A. | 13 | B. | $\sqrt{37}$ | C. | $\sqrt{13}$ | D. | 3 |
| A. | [$\frac{3}{5}$,4] | B. | [$\frac{4}{5}$,5] | C. | [$\frac{4}{5}$,6] | D. | [$\frac{3}{5}$,5] |