题目内容
18.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{2π}{3}$,$\overrightarrow a=({3,0}),|{\overrightarrow b}|=2$,则$|{\overrightarrow a+2\overrightarrow b}|$等于( )| A. | 13 | B. | $\sqrt{37}$ | C. | $\sqrt{13}$ | D. | 3 |
分析 运用向量的数量积的定义可得$\overrightarrow{a}$•$\overrightarrow{b}$,运用向量的平方即为模的平方,计算即可得到所求值.
解答 解:由题意可得|$\overrightarrow{a}$|=3,
$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=3×2×(-$\frac{1}{2}$)=-3,
则$|{\overrightarrow a+2\overrightarrow b}|$=$\sqrt{(\overrightarrow{a}+2\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+4\overrightarrow{a}•\overrightarrow{b}}$
=$\sqrt{9+4×4-4×3}$=$\sqrt{13}$.
故选:C.
点评 本题考查向量的数量积的定义和性质,注意运用向量的平方即为模的平方,考查化简整理的运算能力,属于基础题.
练习册系列答案
相关题目
8.为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(1)求出上表中的x,y,z,s,p的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
| 分数(分数段) | 频数(人数) | 频率 |
| [60,70) | 9 | x |
| [70,80) | y | 0.38 |
| [80,90) | 16 | 0.32 |
| [90,100) | z | s |
| 合计 | p | 1 |
(2)按规定,预赛成绩不低于90分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
6.已知点P是函数y=sin(2x+α)图象与x轴的一个交点,A,B为P点右侧距离点P最近的一个最高点和最低点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=( )
| A. | $\frac{{π}^{2}}{4}$-1 | B. | $\frac{3{π}^{2}}{16}$-1 | C. | $\frac{3{π}^{2}}{4}$-1 | D. | $\frac{{π}^{2}}{8}$-1 |
8.排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都相等为$\frac{2}{3}$,前2局中乙队以2:0领先,则最后乙队获胜的概率是( )
| A. | $\frac{4}{9}$ | B. | $\frac{8}{27}$ | C. | $\frac{19}{27}$ | D. | $\frac{40}{81}$ |