题目内容
3.执行如图所示的程序框图,则输出的结果为( )| A. | 7 | B. | 9 | C. | 10 | D. | 11 |
分析 根据框图的流程依次运行程序,直到满足条件s<0.1,确定输出的i值即可得解.
解答 解:模拟程序的运行,可得
i=1,s=1
s=$\frac{1}{3}$,
不满足条件s<0.1,执行循环体,i=3,s=$\frac{1}{5}$,
不满足条件s<0.1,执行循环体,i=5,s=$\frac{1}{7}$,
不满足条件s<0.1,执行循环体,i=7,s=$\frac{1}{9}$,
不满足条件s<0.1,执行循环体,i=9,s=$\frac{1}{11}$,
满足条件s<0.1,退出循环,输出i的值为9.
故选:B.
点评 本题考查了循环结构的程序框图,根据框图的流程依次运行程序是解答此类问题的常用方法,属于基础题.
练习册系列答案
相关题目
6.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$共线”是“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
7.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1,F2,第二象限的点P(x0,y0)满足bx0+ay0=0,若线段PF2的垂直平分线恰为双曲线C的过一、三象限的渐近线,则双曲线C的离心率为( )
| A. | $\sqrt{5}$ | B. | 4 | C. | $\sqrt{3}$ | D. | 2 |
18.设集合A={0,1},B={x|x2+x-2=0},则A∪B=( )
| A. | ∅ | B. | {1} | C. | {-2,0,1} | D. | {-1,0,1,2} |
8.
当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.
| 组数 | 分组(单位:岁) | 频数 | 频率 |
| 1 | [20,25) | 5 | 0.05 |
| 2 | [25,30) | 20 | 0.20 |
| 3 | [30,35) | a | 0.35 |
| 4 | [35,40) | 30 | b |
| 5 | [40,45] | 10 | 0.10 |
| 合计 | n | 1.00 | |
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.
15.
当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
(1)求出表中的a,b的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率?
| 组数 | 分组(单位:岁) | 频数 | 频率 |
| 1 | [20,25) | 5 | 0.05 |
| 2 | [25,30) | 20 | 0.20 |
| 3 | [30,35) | a | 0.35 |
| 4 | [35,40) | 30 | b |
| 5 | [40,45] | 10 | 0.10 |
| 合计 | n | 1.00 | |
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率?