题目内容

12.已知数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,数列{bn}的前n项和Sn,求证:${S_n}<\frac{7}{16}$.

分析 (I)数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).n≥2时,a1+3a2+…+3n-2an-1=$\frac{n}{3}$,相减可得:3n-1an=$\frac{1}{3}$,可得an.n=1时,a1=$\frac{2}{3}$.
(II)${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,b1=$\frac{3}{8}$.n≥2时,bn=$\frac{1}{{3}^{n+1}(1-\frac{1}{{3}^{n}})(1-\frac{1}{{3}^{n+1}})}$=$\frac{1}{2}$$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$.利用裂项求和方法与数列的单调性即可得出.

解答 (I)解:数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).
∴n≥2时,a1+3a2+…+3n-2an-1=$\frac{n}{3}$,相减可得:3n-1an=$\frac{1}{3}$,∴an=$\frac{1}{{3}^{n}}$.
n=1时,a1=$\frac{2}{3}$.
综上可得:an=$\left\{\begin{array}{l}{\frac{2}{3},n=1}\\{\frac{1}{{3}^{n}},n≥2}\end{array}\right.$.
(II)证明:${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,
∴b1=$\frac{1}{{3}^{2}×(1-\frac{2}{3})×(1-\frac{1}{{3}^{2}})}$=$\frac{3}{8}$.
n≥2时,bn=$\frac{1}{{3}^{n+1}(1-\frac{1}{{3}^{n}})(1-\frac{1}{{3}^{n+1}})}$=$\frac{1}{2}$$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$.
∴Sn=$\frac{3}{8}$+$\frac{1}{2}[(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})$+$(\frac{1}{{3}^{3}-1}-\frac{1}{{3}^{4}-1})$+…+$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})]$
=$\frac{3}{8}$+$\frac{1}{2}(\frac{1}{8}-\frac{1}{{3}^{n+1}-1})$<$\frac{7}{16}$.

点评 本题考查了数列递推关系、裂项求和方法、数列单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网