题目内容

已知数列{an}的前n项和Sn,且满足:
1
a1-1
+
2
a2-1
+
3
a3-1
+…+
n
an-1
=n,n∈N*
(1)求an
(2)求证:
1
S1
+
1
S2
+…+
1
Sn
3
2
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用递推式即可得出;
(2)an=n+1(n∈N*).可得数列{an}是等差数列.Sn=
n(n+3)
2
.
1
Sn
=
2
n(n+3)
=
2
3
(
1
n
-
1
n+3
)
.利用“裂项求和”即可得出.
解答: (1)解:当n=1时,
1
a1-1
=1
,解得a1=2.
1
a1-1
+
2
a2-1
+
3
a3-1
+…+
n
an-1
=n,n∈N*
当n≥2时,
1
a1-1
+
2
a2-1
+
3
a3-1
+…+
n-1
an-1-1
=n-1,n∈N*
两式相减可得:
n
an-1
=1,即an=n+1.
当n=1时也成立,
∴an=n+1(n∈N*).
(II)证明:∵an=n+1(n∈N*).
∴数列{an}是等差数列.
∴Sn=
n(2+n+1)
2
=
n(n+3)
2

1
Sn
=
2
n(n+3)
=
2
3
(
1
n
-
1
n+3
)

1
S1
+
1
S2
+…+
1
Sn
=
2
3
[(1-
1
4
)
+(
1
2
-
1
5
)
+(
1
3
-
1
6
)
+…+(
1
n
-
1
n+3
)]

=
2
3
[1+
1
2
+
1
3
-(
1
n+1
+
1
n+2
+
1
n+3
)]
2
3
(1+
1
2
+
1
3
)
=
11
9
3
2
点评:本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”、递推式的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网