题目内容

已知等差数列{an}的公差不为0,前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(2)另bn=2nan,求b1+b2+…+bn
(3)设Tn为数列{
1
anan+1
}
的前n项和,若Tn≤λan+1对一切n∈N+恒成立,求实数λ的最小值.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列通项公式和前n项和公式及等比数列性质,求出首项和公差,由此能求出an=n+1.
(2)由bn=2nan=2n(n+1),利用错位相减法能求出b1+b2+…+bn=n•2n
(3)由
1
anan+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,利用裂项求和法能求出λ的最小值.
解答: 解:(1)∵等差数列{an}的公差不为0,
前四项和S4=14,且a1,a3,a7成等比,
4a1+6d=14
(a1+2d)2=a1(a1+6d)

解得d=1,或d=0(舍),
∴a1=2,∴an=n+1.
(2)∵bn=2nan=2n(n+1),
记Sn=b1+b2+…+bn
Sn=2×2+22×3+23×4+…+2n(n+1),①
2Sn=22×2+23×3+…+2n+1×(n+1),②
①-②,得:-Sn=2×2+22+23+…+2n-2n+1•(n+1)
=4+
4(1-2n-1)
1-2
-2n+1•(n+1),
Sn=n•2n
∴b1+b2+…+bn=n•2n
(3)∵
1
anan+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
=
n
2(n+2)

∵Tn≤λan+1,∴λ≥
n
2(n+2)2

又 
n
2(n+2)2
=
1
2(n+
4
n
+4)
1
16

∴λ的最小值为
1
16
.…(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查实数的最小值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网