题目内容

通过随机询问36名不同性别的大学生在购买食品时是否看营养说明,得到如下的列联表:
总计
看营养说明81422
不看营养说明10414
总计181836
利用列联表的独立性检验估计看营养说明是否与性别有关?
参考数据当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.
(参考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:应用题,概率与统计
分析:求出Χ2的观测值,与参考数据比较,即可得出结论.
解答: 解:Χ2=
36×(8×4-10×14)2
22×14×18×18
≈4.208>3.841

故有95%的把握说性别和看营养说明之间有关系.
点评:本题主要考察读图表、独立性检验等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力和应用意识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网