题目内容
2.如图,已知$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b,$\overrightarrow{BD}$=3 $\overrightarrow{DC}$,用$\vec a$,$\vec b$表示$\overrightarrow{AD}$,则$\overrightarrow{AD}$=( )| A. | $\vec a$+$\frac{3}{4}$$\vec b$ | B. | $\frac{1}{4}$ $\vec a$+$\frac{3}{4}$$\vec b$ | C. | $\frac{1}{4}$ $\vec a$+$\frac{1}{4}$$\vec b$ | D. | $\frac{3}{4}$ $\vec a$+$\frac{1}{4}$$\vec b$ |
分析 取BC的中点E,连结AE,则$\overrightarrow{AE}=\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$),$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AE}+\overrightarrow{AC}$),从而得出答案.
解答
解:取BC的中点E,连结AE,
∵$\overrightarrow{BD}=3\overrightarrow{DC}$,∴D是CE的中点,
∴$\overrightarrow{AD}=\frac{1}{2}$($\overrightarrow{AC}+\overrightarrow{AE}$)=$\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AE}$,
又E是BC的中点,∴$\overrightarrow{AE}$=$\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,
∴$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$($\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$)=$\frac{1}{4}$$\overrightarrow{AB}+$$\frac{3}{4}$$\overrightarrow{AC}$.
故选B.
点评 本题考查了平面向量的线性运算,属于基础题.
练习册系列答案
相关题目
13.过点(2,-1)的直线中,被圆x2+y2-2x+4y=0截得的弦长最短的直线方程是( )
| A. | x+y-1=0 | B. | x+y+1=0 | C. | x-y+3=0 | D. | x-y-3=0 |