题目内容
利用平行四边形ABCD中,求
-
+
=( )
| BC |
| CD |
| BA |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:根据平面向量的加减运算,结合图形,进行解答即可.
解答:
解:画出图形,如图所示;
-
+
=(
+
)-
=
-
=
+
=
.
故选:D.
| BC |
| CD |
| BA |
| BC |
| BA |
| CD |
=
| BD |
| CD |
=
| BD |
| DC |
=
| BC |
故选:D.
点评:本题考查了平面向量的应用问题,解题时应根据平面向量的运算法则,结合图形进行解答,是基础题.
练习册系列答案
相关题目
等比数列{an}的前n项和为Sn,若4S3-3a3=0,则公比q=( )
A、
| ||
B、
| ||
| C、-2 | ||
| D、2 |
极坐标方程ρ=cosθ化为直角坐标方程为( )
A、(x+
| ||||
B、x2+(y+
| ||||
C、x2+(y-
| ||||
D、(x-
|
已知函数f(x)=3x+2x的零点所在的一个区间是( )
| A、(-2,-1) |
| B、(-1,0) |
| C、(0,1) |
| D、(1,2) |
已知f(x)是定义在R上的函数,且满足f(1+x)=f(1-x),则“f(x)为偶函数”是“2为函数f(x)的一个周期”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
某产品的广告费用x与销售额y的统计数据如下表:
根据上表可得回归方程
=
x+
中的
为9.4,据此模型预报广告费用为6万元时销售额为( )
(参考公式:b=
=
,a=
-b
)
| 广告费用x(万元) | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | 39 | 54 |
| y |
| b |
| a |
| b |
(参考公式:b=
| |||||||
|
| |||||||
|
. |
| y |
. |
| x |
| A、63.6万元 |
| B、65.5万元 |
| C、67.7万元 |
| D、72.0万元 |
a,b,c,d均为实数,下列命题正确的个数有( )
①a>b,c>b⇒a>c;②a>-b⇒c-a<c+b;③a>b⇒ac2>bc2; ④a>b,c>d⇒ac>bd;⑤
>
⇒a>b.
①a>b,c>b⇒a>c;②a>-b⇒c-a<c+b;③a>b⇒ac2>bc2; ④a>b,c>d⇒ac>bd;⑤
| a |
| c2 |
| b |
| c2 |
| A、1 | B、2 | C、3 | D、4 |
函数y=
的定义域是( )
| lg(2-x) | ||
|
| A、(1,2) |
| B、[1,2) |
| C、[1,+∞) |
| D、(-∞,2) |