ÌâÄ¿ÄÚÈÝ
9£®º¯Êýy=sin £¨2x+$\frac{¦Ð}{3}$£©µÄͼÏó¿ÉÓɺ¯Êýy=cosxµÄͼÏ󣨡¡¡¡£©| A£® | ÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | |
| B£® | ÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | |
| C£® | ÏȰѸ÷µãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¬ÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | |
| D£® | ÏȰѸ÷µãµÄºá×ø±êÉ쳤µ½ÔÀ´µÄ2±¶£¬ÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» |
·ÖÎö ÀûÓÃÓÕµ¼¹«Ê½£¬y=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£º°Ñº¯Êýy=cosx=sin£¨x+$\frac{¦Ð}{2}$£©µÄͼÏóµÄºá×ø±ê±äΪÔÀ´µÄ$\frac{1}{2}$±¶£¬¿ÉµÃy=sin£¨2x+$\frac{¦Ð}{2}$£©µÄͼÏó£¬
ÔÙ°ÑËùµÃͼÏóÔÙÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬¿ÉµÃy=sin[2£¨x-$\frac{¦Ð}{12}$£©+$\frac{¦Ð}{2}$]=sin£¨2x+$\frac{¦Ð}{3}$£©µÄͼÏó£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓÕµ¼¹«Ê½£¬y=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®ÏÂÁк¯ÊýÖУ¬Í¼ÏóµÄÒ»²¿·ÖÈçÓÒͼËùʾµÄÊÇ£¨¡¡¡¡£©

| A£® | $y=sin£¨{x+\frac{¦Ð}{6}}£©$ | B£® | $y=cos£¨{2x-\frac{¦Ð}{6}}£©$ | C£® | $y=sin£¨{2x-\frac{¦Ð}{6}}£©$ | D£® | $y=cos£¨{4x-\frac{¦Ð}{3}}£©$ |
1£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | 4 | B£® | $\frac{16}{3}$ | C£® | $\frac{20}{3}$ | D£® | 12 |
19£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}£¨3a-2£©x+6a-1£¨x£¼1£©\\{a^x}£¨x¡Ý1£©\end{array}\right.$µ¥µ÷µÝ¼õ£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬1£© | B£® | £¨0£¬$\frac{2}{3}$£© | C£® | [$\frac{3}{8}$£¬$\frac{2}{3}$£© | D£® | [$\frac{3}{8}$£¬1£© |