题目内容

20.已知向量$\overrightarrow a=(2,sinθ)$与$\overrightarrow b=(cosθ,1)$互相垂直,其中θ∈(0,π).
(Ⅰ)求tanθ的值;
(Ⅱ)若$sin(θ-φ)=\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}<φ<π$,求cosφ的值.

分析 (Ⅰ)根据向量垂直关系的坐标建立等式,可得tanθ的值.
(Ⅱ)利用θ∈(0,π)和tanθ的值求解sinθ和cosθ的值.构造思想,cosφ=cos[θ-(θ-φ)]=cosθcos(θ-φ)+sinθsin(θ-φ)可得答案.

解答 解:(Ⅰ)由题意,向量$\overrightarrow a=(2,sinθ)$与$\overrightarrow b=(cosθ,1)$互相垂直,即$\overrightarrow a$与$\overrightarrow b$互相垂直,
∴$\overrightarrow a•\overrightarrow b=2cosθ+sinθ=0$,
∴tanθ=-2.
(Ⅱ)由(Ⅰ)可知2cosθ+sinθ=0,sin2θ+cos2θ=1,
解得:$sinθ=±\frac{{2\sqrt{5}}}{5},cosθ=±\frac{{\sqrt{5}}}{5}$
∵θ∈(0,π),
又由(Ⅰ)知tanθ=-2<0,
∴$θ∈(\frac{π}{2},π)$.
∴$sinθ=\frac{{2\sqrt{5}}}{5},cosθ=-\frac{{\sqrt{5}}}{5}$.
∵$\frac{π}{2}<φ<π,\frac{π}{2}<θ<π⇒-\frac{π}{2}<θ-φ<\frac{π}{2}$
$sin(θ-φ)=\frac{{\sqrt{10}}}{10}$,
∴$cos(θ-φ)=\sqrt{1-{{sin}^2}(θ-φ)}=\sqrt{1-\frac{1}{10}}=\frac{{3\sqrt{10}}}{10}$
∴cosφ=cos[θ-(θ-φ)]=cosθcos(θ-φ)+sinθsin(θ-φ)=$-\frac{{\sqrt{5}}}{5}×\frac{{3\sqrt{10}}}{10}+\frac{{2\sqrt{5}}}{5}×\frac{{\sqrt{10}}}{10}=-\frac{{\sqrt{2}}}{10}$.

点评 本题主要考查三角函数的图象和性质,转化思想,构造出cosφ解决本题的关键.要注意角的范围问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网