ÌâÄ¿ÄÚÈÝ
5£®Ä³ÖÐѧÊýѧÀÏʦ·Ö±ðÓÃÁ½ÖÖ²»Í¬½Ìѧ·½Ê½¶ÔÈëѧÊýѧƽ¾ù·ÖºÍÓÅÐãÂʶ¼ÏàͬµÄ¼×¡¢ÒÒÁ½¸ö¸ßһаࣨÈËÊý¾ùΪ20ÈË£©½øÐнÌѧ£¨Á½°àµÄѧÉúѧϰÊýѧÇڷ̶ܳȺÍ×Ô¾õÐÔÒ»Ö£©£¬ÊýѧÆÚÖÕ¿¼ÊԳɼ¨¾¥Ò¶Í¼ÈçÏ£º£¨1£©Ñ§Ð£¹æ¶¨£º³É¼¨²»µÍÓÚ75·ÖµÄÓÅÐ㣬ÇëÌîдÏÂÃæµÄ2¡Á2Áª±í£¬²¢ÅжÏÓжà´ó°ÑÎÕÈÏΪ¡°³É¼¨ÓÅÐãÓë½Ìѧ·½Ê½Óйء±£®
| ¼×°à | ÒÒ°à | ºÏ¼Æ | |
| ÓÅÐã | 14 | 8 | 22 |
| ²»ÓÅÐã | 6 | 12 | 18 |
| ºÏ¼Æ | 20 | 20 | 40 |
| P£¨x2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
£¨2£©´ÓÁ½¸ö°àÊýѧ³É¼¨²»µÍÓÚ90·ÖµÄͬѧÖÐËæ»ú³éÈ¡3Ãû£¬Éè¦ÎΪ³éÈ¡³É¼¨²»µÍÓÚ95·ÖͬѧÈËÊý£¬Çó¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®
·ÖÎö £¨1£©Óɾ¥Ò¶Í¼¿ÉµÃ±í¸ñ£¬¼ÆËã¿ÉµÃK2µÄ½üËÆÖµ£¬½áºÏ²Î¿¼ÊýÖµ¿ÉµÃ½áÂÛ£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ¦ÎµÄ¿ÉÄÜÖµ£¬·Ö±ð¿ÉÇóÆä¸ÅÂÊ£¬¿ÉµÃ·Ö²¼ÁУ¬½ø¶ø¿ÉµÃÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©ÈçͼËùʾ
| ¼×°à | ÒÒ°à | ºÏ¼Æ | |
| ÓÅÐã | 14 | 8 | 22 |
| ²»ÓÅÐã | 6 | 12 | 18 |
| ºÏ¼Æ | 20 | 20 | 40 |
£¨2£©Á½¸ö°àÊýѧ³É¼¨²»µÍÓÚ90·ÖµÄͬѧÖУ¬³É¼¨²»µÍÓÚ95·ÖͬѧÈËÊýÓÐ3Ãû£¬
´ÓÖÐËæ»ú³éÈ¡3Ãû£¬¦Î=0£¬1£¬2£¬3
$P£¨¦Î=0£©=\frac{C_4^3}{C_7^3}=\frac{4}{35}$£¬$P£¨¦Î=1£©=\frac{C_4^2C_3^1}{C_7^3}=\frac{18}{35}$£¬$P£¨¦Î=2£©=\frac{C_4^1C_3^2}{C_7^3}=\frac{12}{35}$£¬$P£¨¦Î=3£©=\frac{C_3^3}{C_7^3}=\frac{1}{35}$£¬
¦ÎµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{4}{35}$ | $\frac{18}{35}$ | $\frac{12}{35}$ | $\frac{1}{35}$ |
µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼£¬¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÒÔ¼°¶ÀÁ¢ÐÔ¼ìÑ飬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=2|x-m|-1£¨m¡ÊR£©ÎªÅ¼º¯Êý£¬¼Ça=f£¨-2£©£¬b=f£¨log25£©£¬c=f£¨2m£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
| A£® | a£¼b£¼c | B£® | c£¼a£¼b | C£® | a£¼c£¼b | D£® | c£¼b£¼a |
13£®Ë«ÇúÏßmx2+ny2=1£¨mn£¼0£©µÄÒ»Ìõ½¥½üÏß·½³ÌΪ$y=\sqrt{3}x$£¬ÔòËüµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\frac{{2\sqrt{3}}}{3}$ | C£® | $\sqrt{3}$»ò$\frac{{2\sqrt{3}}}{3}$ | D£® | 2»ò$\frac{{2\sqrt{3}}}{3}$ |
10£®Ô²E¾¹ýÈýµãA£¨0£¬1£©£¬B£¨2£¬0£©£¬C£¨0£¬-1£©£¬ÇÒÔ²ÐÄÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÔòÔ²EµÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
| A£® | £¨x-$\frac{3}{2}$£©2+y2=$\frac{25}{4}$ | B£® | £¨x+$\frac{3}{4}$£©2+y2=$\frac{25}{16}$ | C£® | £¨x-$\frac{3}{4}$£©2+y2=$\frac{25}{16}$ | D£® | £¨x-$\frac{3}{4}$£©2+y2=$\frac{25}{4}$ |
17£®ÒÑÖª¼¯ºÏA={x|x¡Ý3»òx¡Ü1}£¬B={x|x2-6x+8£¼0}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
| A£® | £¨1£¬3£© | B£® | £¨1£¬4£© | C£® | £¨2£¬3£© | D£® | £¨2£¬4£© |
15£®ÔÚ¡÷ABCÖУ¬$AB=3£¬AC=2£¬\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC}£¬Ôò\overrightarrow{AD}•\overrightarrow{DB}$µÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{5}{2}$ | B£® | $-\frac{5}{2}$ | C£® | $\frac{5}{4}$ | D£® | $-\frac{5}{4}$ |