题目内容

设函数f(x)=ax3+bx2+cx,若1和-1是函数f(x)的两个零点,x1和x2是f(x)的两个极值点,则x1•x2=
 
考点:利用导数研究函数的极值,函数的零点与方程根的关系
专题:计算题,导数的综合应用
分析:由1和-1是函数f(x)的两个零点可得f(x)=ax3+bx2+cx=a(x-1)x(x+1),求导利用根与系数的关系即可.
解答: 解:∵1和-1是函数f(x)的两个零点,
∴f(x)=ax3+bx2+cx=a(x-1)x(x+1),
∴x1和x2是f′(x)=a(3x2-1)=0的两个根,
则x1•x2=-
1
3

故答案为:-
1
3
点评:本题考查了导数在求极值时的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网