题目内容

9.某百货公司1~6月份的销售量x与利润y的统计数据如表:
月份123456
销售量x(万件)1011131286
利润y(万元)222529261612
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

分析 (1)求出$\overline{x}$,$\overline{y}$,由公式,得$\widehat{b}$的值,从而求出$\widehat{a}$的值,从而得到y关于x的线性回归方程,
(2)由(1)能求出该小组所得线性回归方程是理想的.

解答 解:(1)∵$\overline{x}$=11,$\overline{y}$=24,
∴$\widehat{b}$=$\frac{18}{7}$,
故$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=-$\frac{30}{7}$,
故y关于x的方程是:$\widehat{y}$=$\frac{18}{7}$x-$\frac{30}{7}$;
(2)∵x=10时,$\widehat{y}$=$\frac{150}{7}$,
误差是|$\frac{150}{7}$-22|=$\frac{4}{7}$<1,
x=6时,$\widehat{y}$=$\frac{78}{7}$,误差是|$\frac{78}{7}$-12|=$\frac{6}{7}$<1,
故该小组所得线性回归方程是理想的.

点评 本题考查了求回归方程问题,考查残差的计算,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网