ÌâÄ¿ÄÚÈÝ
1£®ÏÂÃæÓÐÃüÌ⣺¢Ùy=|sinx-$\frac{1}{2}$|µÄÖÜÆÚÊǦУ»
¢Úy=sinx+sin|x|µÄÖµÓòÊÇ[0£¬2]£»
¢Û·½³Ìcosx=lgxÓÐÈý½â£»
¢Ü¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÄÇô¦ØµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£»
¢ÝÔÚy=3sin£¨2x+$\frac{¦Ð}{4}$£©ÖУ¬Èôf£¨x1£©=f£¨x2£©=0£¬Ôòx1-x2±ØÎª¦ÐµÄÕûÊý±¶£»
¢ÞÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬ÔòµãP£¨cosB-sinA£¬sinB-cosAÔÚµÚ¶þÏóÏÞ£»
¢ßÔÚ¡÷ABCÖУ¬Èô$\overrightarrow{AB}•\overrightarrow{BC}£¾0$£¬Ôò¡÷ABC¶Û½ÇÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
·ÖÎö ¢Ù£¬¡ßy=|sin£¨¦Øx-$\frac{1}{2}$|µÄÖÜÆÚÊÇ$\frac{¦Ð}{¦Ø}$£¬£»
¢Ú£¬µ±x¡Ý0ʱ£¬y=sinx+sin|x|=2sinxÖµÓò²»ÊÇ[0£¬2]£¬£»
¢Û£¬¡ßlg2¦Ð£¼1£¬lg4¦Ð£¾1£¬·½³Ìcosx=lgxÓÐÈý½â£¬ÕýÈ·£»
¢Ü£¬¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐԿɵæؕ$\frac{2¦Ð}{3}¡Ü\frac{¦Ð}{2}$¡Ü£¬ÓÉ´ËÇóµÃÕýÊý¦ØµÄ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£¬£»
¢Ý£¬º¯ÊýµÄÖÜÆÚT=¦Ð£¬º¯ÊýÖµµÈÓÚ0µÄxÖ®²îµÄ×îСֵΪ$\frac{T}{2}$£¬ËùÒÔx1-x2±ØÊÇ$\frac{¦Ð}{2}$µÄÕûÊý±¶£»
¢Þ£¬ÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬$\frac{¦Ð}{2}£¾\\;B£¾\frac{¦Ð}{2}-A$B£¾$\frac{¦Ð}{2}$-A£¬Ôò cosB-sinA£¼0£¬sinB-cosA£¾0£¬£»
½â´ð ½â£º¶ÔÓÚ¢Ù£¬¡ßy=|sin£¨¦Øx-$\frac{1}{2}$|µÄÖÜÆÚÊÇ$\frac{¦Ð}{¦Ø}$£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Ú£¬µ±x¡Ý0ʱ£¬y=sinx+sin|x|=2sinxÖµÓò²»ÊÇ[0£¬2]£¬¹Ê´í£»
¶ÔÓÚ¢Û£¬¡ßlg2¦Ð£¼1£¬lg4¦Ð£¾1£¬·½³Ìcosx=lgxÓÐÈý½â£¬ÕýÈ·£»
¶ÔÓڢܣ¬¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐԿɵæؕ$\frac{2¦Ð}{3}¡Ü\frac{¦Ð}{2}$¡Ü£¬ÓÉ´ËÇóµÃÕýÊý¦ØµÄ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£¬¹ÊÕýÈ·£»
¶ÔÓڢݣ¬º¯ÊýµÄÖÜÆÚT=¦Ð£¬º¯ÊýÖµµÈÓÚ0µÄxÖ®²îµÄ×îСֵΪ$\frac{T}{2}$£¬ËùÒÔx1-x2±ØÊÇ$\frac{¦Ð}{2}$µÄÕûÊý±¶£®¹Ê´í£»
¶ÔÓÚ¢Þ£¬ÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬$\frac{¦Ð}{2}£¾\\;B£¾\frac{¦Ð}{2}-A$B£¾$\frac{¦Ð}{2}$-A£¬Ôò cosB-sinA£¼0£¬sinB-cosA£¾0£¬¹ÊÕýÈ·£»
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÃüÌâµÄÕæ¼Ù£¬Éæ¼°µ½Èý½Çº¯ÊýµÄ֪ʶ£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | 22016 | B£® | 22018 | C£® | -22017 | D£® | 22017 |
| ÔÂ·Ý | 1 | 2 | 3 | 4 | 5 | 6 |
| ÏúÊÛÁ¿x£¨Íò¼þ£© | 10 | 11 | 13 | 12 | 8 | 6 |
| ÀûÈóy£¨ÍòÔª£© | 22 | 25 | 29 | 26 | 16 | 12 |
£¨2£©ÈôÓɻعéÖ±Ïß·½³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëʣϵļìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý2ÍòÔª£¬ÔòÈÏΪµÃµ½µÄ»Ø¹éÖ±Ïß·½³ÌÊÇÀíÏëµÄ£¬ÊÔÎÊËùµÃ»Ø¹éÖ±Ïß·½³ÌÊÇ·ñÀíÏ룿
£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£©=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-b$\overline{x}$£®
| A£® | $\frac{1}{2}$ | B£® | $-\frac{1}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | $-\frac{{\sqrt{3}}}{2}$ |
| A£® | $\frac{1}{2}$ | B£® | $-\frac{1}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | -1 |
| A£® | $\sqrt{5}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\sqrt{5}$»ò$\frac{\sqrt{3}}{2}$ | D£® | $\frac{\sqrt{5}}{2}$ |
| A£® | 3 | B£® | 4 | C£® | 6 | D£® | 7 |