题目内容

9.设三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.其中角B为锐角.
(1)求B的大小;
(2)求cosA+sinC的取值范围.

分析 (1)由a=2bsinA根据正弦定理,得sinA=2sinBsinA,进而得出.
(2)利用和差公式、三角函数的单调性即可得出.

解答 解:(1)由a=2bsinA根据正弦定理,得sinA=2sinBsinA,故$sinB=\frac{1}{2}$.
因为角B为锐角,故$B=\frac{π}{6}$.…(6分)
(2)$cosA+sinC=cosA+sin(π-\frac{π}{6}-A)=cosA+sin(\frac{π}{6}+A)=cosA+\frac{1}{2}cosA+$$\frac{{\sqrt{3}}}{2}sinA$
=$\sqrt{3}sin(A+\frac{π}{3})$.…(10分)
∴$0<A<\frac{5π}{6}$,$\frac{π}{3}<A+\frac{π}{3}<\frac{7π}{6}$,
故$-\frac{1}{2}<sin(A+\frac{π}{3})≤1$,$-\frac{{\sqrt{3}}}{2}<\sqrt{3}sin(A+\frac{π}{3})≤\sqrt{3}$.
故cosA+sinC的取值范围是$({-\frac{{\sqrt{3}}}{2},\sqrt{3}}]$.…(12分)

点评 本题考查了正弦定理、和差公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网