题目内容
12.在△ABC中,角A,B,C的对边分别为a,b,c,若满足2bcosA=2c-$\sqrt{3}$a,则角B的大小为$\frac{π}{6}$.分析 由已知及余弦定理可得c2+a2-b2=$\sqrt{3}ac$,进而利用余弦定理可求cosB=$\frac{\sqrt{3}}{2}$,结合范围B∈(0,π),即可得解B的值.
解答 解:∵2bcosA=2c-$\sqrt{3}$a,
∴cosA=$\frac{2c-\sqrt{3}a}{2b}$=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,整理可得:c2+a2-b2=$\sqrt{3}ac$,
∴cosB=$\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{3}ac}{2ac}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题主要考查了余弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
3.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,若tan B=$\frac{3}{4}$,$\frac{cosA}{sinA}$+$\frac{cosC}{sinC}$的值为( )
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
20.已知复数z满足$\frac{z}{1+i}=|{2-i}|$,则z的共轭复数对应的点位于复平面内的( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.已知函数f(x)=lnx-x3与g(x)=x3-ax的图象上存在关于x轴的对称点,则实数a的取值范围为( )
| A. | (-∞,e) | B. | (-∞,e] | C. | $(-∞,\frac{1}{e})$ | D. | $(-∞,\frac{1}{e}]$ |
1.已知集合P={x|x2-2x-8≤0},Q={x|x≥a},(∁RP)∪Q=R,则a的取值范围是( )
| A. | (-2,+∞) | B. | (4,+∞) | C. | (-∞,-2] | D. | (-∞,4] |