题目内容

17.已知函数f(x)=sinωx($\sqrt{3}$cosωx+sinωx)(ω>0)的图象两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求ω的值;
(2)求函数f(x)的单凋减区间;
(3)若对任意的x1,x2∈[0,$\frac{π}{2}$],都有,|f(x1)-f(x2)|<m,求实数m的取值范围.

分析 (1)利用二倍角公式与差角公式对f(x)进行化简,根据周期列出方程解出;
(2)令$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ解出.
(3)求出f(x)在[0,$\frac{π}{2}$]上的最大值与最小值,令最大值与最小值的差小于m即可.

解答 解:(1)f(x)=$\sqrt{3}$sinωxcosωx+sin2ωx=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx$+\frac{1}{2}$=sin(2ωx-$\frac{π}{6}$)$+\frac{1}{2}$.∵f(x)图象两相邻对称轴间的距离为$\frac{π}{2}$,
∴T=$\frac{2π}{2ω}$=π,∴ω=1.
(2)f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
令$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得:$\frac{π}{3}$+kπ≤x≤$\frac{5π}{6}$+kπ.∴f(x)的单调减区间是[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ],k∈Z.
(3)∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴f(x)在[0,$\frac{π}{2}$]上最大值是$\frac{3}{2}$,最小值是0.
∵|f(x1)-f(x2)|<m恒成立,∴m>$\frac{3}{2}$.

点评 本题考查了三角函数的恒等变换,化简求值,三角函数的性质,及函数恒成立问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网