ÌâÄ¿ÄÚÈÝ

ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ²îÊýÁУ®
£¨1£©Èôa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐ{an}µÄǰnºÍΪSn£¬Éèbn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
£¬Èô¶ÔÈÎÒâµÄn¡Ê¦µ£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬ÇóʵÊýkµÄ×îСֵ£»
£¨3£©ÈôÊýÁÐ{an}ÖÐÓÐÁ½Ïî¿ÉÒÔ±íʾΪij¸öÕûÊýc£¨c£¾1£©µÄ²»Í¬´ÎÃÝ£¬ÇóÖ¤£ºÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃa32=a2£¨a4+1£©£¬d£¾0£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽan=2n£®
£¨2£©ÓÉSn=n£¨n+1£©£¬µÃbn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
=
1
2n+
1
n
+3
£¬ÒªÊ¹¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬Ðèʹk¡Ý[bn]max=
1
6
£¬ÓÉ´ËÄÜÇó³öʵÊýkµÄ×îСֵ£®10·Ö£©
£¨3£©Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬ÓÉ´ËÄÜÖ¤Ã÷ÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
½â´ð£º £¨1£©½â£ºÒòΪa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬
ËùÒÔa1=2£¬a32=a2£¨a4+1£©£¬ÓÖÒòΪ{an}ÊÇÕýÏîµÈ²îÊýÁУ¬¹Êd£¾0
ËùÒÔ£¨2+2d£©2=£¨2+d£©£¨3+3d£©£¬µÃd=2»òd=1£¨ÉáÈ¥£©£¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽan=2n£®¡­£¨4·Ö£©
£¨2£©½â£ºÒòΪSn=n£¨n+1£©£¬
bn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
=
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+¡­+
1
2n(2n+1)

=
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+¡­+
1
2n
-
1
2n+1

=
1
n+1
-
1
2n

=
n
2n2+3n+1

=
1
2n+
1
n
+3
£¬
Áîf(x)=2x+
1
x
£¨x¡Ý1£©£¬Ôòf¡ä£¨x£©=2x-
1
x2
£¬µ±xx¡Ý1ʱ£¬f¡ä£¨x£©£¾0ºã³ÉÁ¢£¬
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬[f£¨x£©]min=f£¨1£©=3£¬¼´µ±n=1ʱ£¬[bn]max=
1
6
£¬
Ҫʹ¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬
ÔòÐëʹk¡Ý[bn]max=
1
6
£¬ËùÒÔʵÊýkµÄ×îСֵΪ
1
6
£®¡­£¨10·Ö£©
£¨3£©Ö¤Ã÷£ºÒòΪÕâ¸öÊýÁеÄËùÓÐÏî¶¼ÊÇÕýÊý£¬²¢ÇÒ²»ÏàµÈ£¬ËùÒÔd£¾0£¬
Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬
Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬
¹Êcs-cr=aj-aiÊÇdµÄÕûÊý±¶£¬ÊÇcµÄr+kt´ÎÃÝcc+kl£¬
ËùÒÔcr+kl-cr=cr£¨ckt-1£©=cr£¨ct-1£©£¨c£¨k-l£©t+k+1£©£¬ÓÒ±ßÊÇdµÄÕûÊý±¶£®
ËùÓÐcr+ktÕâÖÖÐÎʽÊÇÊýÁÐ{an}ÖÐijһÏ
Òò´ËÓеȱÈÊýÁÐ{bn}£¬ÆäÖÐb1=cr£¬q=ct=c5-r£®    ¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²éʵÊýµÄ×îСֵµÄÇ󷨣¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬½âÌâҪעÒâ²»µÈʽÐÔÖʺÍÊýÁÐ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø