ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ²îÊýÁУ®
£¨1£©Èôa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐ{an}µÄǰnºÍΪSn£¬Éèbn=
+
+¡+
£¬Èô¶ÔÈÎÒâµÄn¡Ê¦µ£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬ÇóʵÊýkµÄ×îСֵ£»
£¨3£©ÈôÊýÁÐ{an}ÖÐÓÐÁ½Ïî¿ÉÒÔ±íʾΪij¸öÕûÊýc£¨c£¾1£©µÄ²»Í¬´ÎÃÝ£¬ÇóÖ¤£ºÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
£¨1£©Èôa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐ{an}µÄǰnºÍΪSn£¬Éèbn=
| 1 |
| Sn+1 |
| 1 |
| Sn+2 |
| 1 |
| S2n |
£¨3£©ÈôÊýÁÐ{an}ÖÐÓÐÁ½Ïî¿ÉÒÔ±íʾΪij¸öÕûÊýc£¨c£¾1£©µÄ²»Í¬´ÎÃÝ£¬ÇóÖ¤£ºÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃa32=a2£¨a4+1£©£¬d£¾0£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽan=2n£®
£¨2£©ÓÉSn=n£¨n+1£©£¬µÃbn=
+
+¡+
=
£¬ÒªÊ¹¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬Ðèʹk¡Ý[bn]max=
£¬ÓÉ´ËÄÜÇó³öʵÊýkµÄ×îСֵ£®10·Ö£©
£¨3£©Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬ÓÉ´ËÄÜÖ¤Ã÷ÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
£¨2£©ÓÉSn=n£¨n+1£©£¬µÃbn=
| 1 |
| Sn+1 |
| 1 |
| Sn+2 |
| 1 |
| S2n |
| 1 | ||
2n+
|
| 1 |
| 6 |
£¨3£©Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬ÓÉ´ËÄÜÖ¤Ã÷ÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
½â´ð£º
£¨1£©½â£ºÒòΪa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬
ËùÒÔa1=2£¬a32=a2£¨a4+1£©£¬ÓÖÒòΪ{an}ÊÇÕýÏîµÈ²îÊýÁУ¬¹Êd£¾0
ËùÒÔ£¨2+2d£©2=£¨2+d£©£¨3+3d£©£¬µÃd=2»òd=1£¨ÉáÈ¥£©£¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽan=2n£®¡£¨4·Ö£©
£¨2£©½â£ºÒòΪSn=n£¨n+1£©£¬
bn=
+
+¡+
=
+
+¡+
=
-
+
-
+¡+
-
=
-
=
=
£¬
Áîf(x)=2x+
£¨x¡Ý1£©£¬Ôòf¡ä£¨x£©=2x-
£¬µ±xx¡Ý1ʱ£¬f¡ä£¨x£©£¾0ºã³ÉÁ¢£¬
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬[f£¨x£©]min=f£¨1£©=3£¬¼´µ±n=1ʱ£¬[bn]max=
£¬
Ҫʹ¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬
ÔòÐëʹk¡Ý[bn]max=
£¬ËùÒÔʵÊýkµÄ×îСֵΪ
£®¡£¨10·Ö£©
£¨3£©Ö¤Ã÷£ºÒòΪÕâ¸öÊýÁеÄËùÓÐÏî¶¼ÊÇÕýÊý£¬²¢ÇÒ²»ÏàµÈ£¬ËùÒÔd£¾0£¬
Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬
Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬
¹Êcs-cr=aj-aiÊÇdµÄÕûÊý±¶£¬ÊÇcµÄr+kt´ÎÃÝcc+kl£¬
ËùÒÔcr+kl-cr=cr£¨ckt-1£©=cr£¨ct-1£©£¨c£¨k-l£©t+k+1£©£¬ÓÒ±ßÊÇdµÄÕûÊý±¶£®
ËùÓÐcr+ktÕâÖÖÐÎʽÊÇÊýÁÐ{an}ÖÐijһÏ
Òò´ËÓеȱÈÊýÁÐ{bn}£¬ÆäÖÐb1=cr£¬q=ct=c5-r£® ¡£¨16·Ö£©
ËùÒÔa1=2£¬a32=a2£¨a4+1£©£¬ÓÖÒòΪ{an}ÊÇÕýÏîµÈ²îÊýÁУ¬¹Êd£¾0
ËùÒÔ£¨2+2d£©2=£¨2+d£©£¨3+3d£©£¬µÃd=2»òd=1£¨ÉáÈ¥£©£¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽan=2n£®¡£¨4·Ö£©
£¨2£©½â£ºÒòΪSn=n£¨n+1£©£¬
bn=
| 1 |
| Sn+1 |
| 1 |
| Sn+2 |
| 1 |
| S2n |
| 1 |
| (n+1)(n+2) |
| 1 |
| (n+2)(n+3) |
| 1 |
| 2n(2n+1) |
=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=
| 1 |
| n+1 |
| 1 |
| 2n |
=
| n |
| 2n2+3n+1 |
=
| 1 | ||
2n+
|
Áîf(x)=2x+
| 1 |
| x |
| 1 |
| x2 |
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬[f£¨x£©]min=f£¨1£©=3£¬¼´µ±n=1ʱ£¬[bn]max=
| 1 |
| 6 |
Ҫʹ¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬
ÔòÐëʹk¡Ý[bn]max=
| 1 |
| 6 |
| 1 |
| 6 |
£¨3£©Ö¤Ã÷£ºÒòΪÕâ¸öÊýÁеÄËùÓÐÏî¶¼ÊÇÕýÊý£¬²¢ÇÒ²»ÏàµÈ£¬ËùÒÔd£¾0£¬
Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬
Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬
¹Êcs-cr=aj-aiÊÇdµÄÕûÊý±¶£¬ÊÇcµÄr+kt´ÎÃÝcc+kl£¬
ËùÒÔcr+kl-cr=cr£¨ckt-1£©=cr£¨ct-1£©£¨c£¨k-l£©t+k+1£©£¬ÓÒ±ßÊÇdµÄÕûÊý±¶£®
ËùÓÐcr+ktÕâÖÖÐÎʽÊÇÊýÁÐ{an}ÖÐijһÏ
Òò´ËÓеȱÈÊýÁÐ{bn}£¬ÆäÖÐb1=cr£¬q=ct=c5-r£® ¡£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²éʵÊýµÄ×îСֵµÄÇ󷨣¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬½âÌâҪעÒâ²»µÈʽÐÔÖʺÍÊýÁÐ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éèf£¨x£©ÊǶ¨ÒåÔÚ£¨-¡Þ£¬+¡Þ£©ÉϿɵ¼º¯ÊýÇÒÂú×ãxf'£¨x£©+f£¨x£©£¾0¶ÔÈÎÒâµÄÕýÊýa£¬b£¬Èôa£¾bÔòÏÂÁв»µÈʽºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|