题目内容

18.已知实数x,y满足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥m\end{array}\right.$如果目标函数z=y-x的最小值为-2,则实数m等于(  )
A.0B.-2C.-4D.1

分析 作出不等式组对应的平面区域,利用目标函数z=y-x的最小值是-2,确定m的取值.

解答 解:作出不等式组对应的平面区域如图:

由目标函数z=y-x的最小值是-2,得y=x+z,
如图所示当直线y=x+z过点A时,z最小,
由$\left\{\begin{array}{l}{y=2x-1}\\{x+y=m}\end{array}\right.$得A($\frac{m+1}{3}$,$\frac{2m-1}{3}$)
代入z=y-x=$\frac{m-2}{3}=-2$⇒m=-4
故选:C.

点评 本题主要考查线性规划的应用,根据条件求出m的值是解决本题的关键,利用数形结合是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网