题目内容

3.如图,过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>1)上顶点和右顶点分别作圆x2+y2=1的两条切线的斜率之积为-$\frac{{\sqrt{2}}}{2}$,则椭圆的离心率的取值范围是$({0,\frac{{\sqrt{2}}}{2}})$.

分析 由题意设出两切线方程,由点到直线的距离公式可得a与k,b与k的关系,代入椭圆离心率可得e与k的关系,求出函数值域得答案.

解答 解:由题意设两条切线分别为:y=kx+b,y=-$\frac{\sqrt{2}}{2k}$(x-a)(k≠0),
由圆心到两直线的距离均为半径得:
$\frac{b}{\sqrt{{k}^{2}+1}}=1$,$\frac{\sqrt{2}a}{\sqrt{4{k}^{2}+2}}=1$,
化简得:b2=k2+1,a2=2k2+1.
∴$e=\frac{c}{a}=\sqrt{\frac{{c}^{2}}{{a}^{2}}}=\sqrt{\frac{{a}^{2}-{b}^{2}}{{a}^{2}}}=\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{{k}^{2}+1}{2{k}^{2}+1}}$
=$\sqrt{\frac{1}{2+\frac{1}{{k}^{2}}}}$(k≠0).
∴0<e<$\frac{\sqrt{2}}{2}$.
故答案为:$({0,\frac{{\sqrt{2}}}{2}})$.

点评 本题考查椭圆的简单性质,考查了点到直线距离公式的应用,训练了函数值域的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网