题目内容

18.某函数部分图象如图所示,它的函数解析式可能是(  )
A.$y=sin(-\frac{5}{6}x+\frac{3π}{5})$B.$y=sin(\frac{6}{5}x-\frac{2π}{5})$C.$y=sin(\frac{6}{5}x+\frac{3π}{5})$D.$y=-cos(\frac{5}{6}x+\frac{3π}{5})$

分析 根据已知函数的图象,可分析出函数的最值,确定A的值,分析出函数的周期,确定ω的值,将($\frac{π}{3}$,0)代入解析式,可求出φ值,进而求出函数的解析式.

解答 解:不妨令该函数解析式为y=Asin(ωx+ϕ),由图知A=1,$\frac{T}{4}=\frac{3π}{4}-\frac{π}{3}$=$\frac{5π}{12}$,
于是$\frac{2π}{ω}=\frac{5π}{3}$,即$ω=\frac{6}{5}$,
因$\frac{π}{3}$是函数减时经过的零点,
于是$\frac{6}{5}•\frac{π}{3}+ϕ=2kπ+π$,k∈Z,
所以ϕ可以是$\frac{3π}{5}$,
故选:C.

点评 本题考查的知识点是正弦型函数解析式的求法,其中关键是要根据图象分析出函数的最值,周期等,进而求出A,ω和φ值,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网