ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖª¹ýÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF×÷Çãб½Ç120¡ãµÄÖ±Ïßl½»ÍÖԲΪA£¬B£¬Èô$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{\sqrt{2}}{2}$D£®$\frac{2}{3}$

·ÖÎö ·½·¨Ò»£ºÓÉÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÇó¸ù¹«Ê½ÇóµÃAºÍBµÄºá×ø±ê£¬ÓÉ-y1=2y2£®´úÈëÇóµÃaºÍcµÄ¹ØÏµ£¬ÀûÓÃÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
·½·¨¶þ£ºÀûÓÃÍÖÔ²µÄµÚ¶þ¶¨Òå¼°ÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃØ­AFØ­=$\frac{2}{3}$Ø­ACØ­£¬e=$\frac{Ø­AFØ­}{Ø­ACØ­}$=$\frac{2}{3}$£®

½â´ð ½â£º·½·¨Ò»£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªy1£¾0£¬y2£¼0£®
Ö±ÏßlµÄбÂÊk=-$\sqrt{3}$£¬Ö±Ïßl·½³ÌΪy=-$\sqrt{3}$£¨x-c£©£¬£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\sqrt{3}£¨x-c£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨3a2+b2£©y2-2$\sqrt{3}$b2cy-3b4=0£¬½âµÃy1=$\frac{\sqrt{3}{b}^{2}£¨c+2a£©}{3{a}^{2}+{b}^{2}}$£¬y2=$\frac{\sqrt{3}{b}^{2}£¨c-2a£©}{3{a}^{2}+{b}^{2}}$£¬
ÓÉ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬Ôò-y1=2y2£®¼´-$\frac{\sqrt{3}{b}^{2}£¨c+2a£©}{3{a}^{2}+{b}^{2}}$=2¡Á$\frac{\sqrt{3}{b}^{2}£¨c-2a£©}{3{a}^{2}+{b}^{2}}$£¬
ÕûÀíµÃ£º3c=2a£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{2}{3}$£¬
¹ÊÑ¡D
·½·¨¶þ£ºÈçͼ£¬ÉèÉèÍÖÔ²µÄÓÒ×¼ÏßΪl£¬¹ýAµã×÷AC¡ÍlÓÚC£¬
¹ýµãB×÷BD¡ÍlÓÚD£¬ÔÙ¹ýBµã×÷BG¡ÍACÓÚG£¬
Ö±½Ç¡÷ABGÖУ¬¡ÏBAG=60¡ã£¬ÔòØ­ABØ­=2Ø­AGØ­£¬¡­¢Ù
ÓÉÍÖÔ²µÄµÚ¶þ¶¨ÒåµÃ£ºe=$\frac{Ø­AFØ­}{Ø­ACØ­}$=$\frac{Ø­BFØ­}{Ø­BDØ­}$£¬
¡ßØ­$\overrightarrow{AF}$Ø­=2Ø­$\overrightarrow{FB}$Ø­£¬ÔòØ­ACØ­=2Ø­BDØ­£¬
Ö±½ÇÌÝÐÎABDCÖУ¬Ø­AGØ­=Ø­ACØ­-Ø­BDØ­=$\frac{1}{2}$Ø­ACØ­¡­¢Ú
ÓÉ¢Ù¢Ú¿ÉÖª£¬¿ÉµÃØ­ABØ­=Ø­ACØ­£¬
Ó֡ߨ­AFØ­=$\frac{2}{3}$Ø­ACØ­£¬
¡àe=$\frac{Ø­AFØ­}{Ø­ACØ­}$=$\frac{2}{3}$£¬
¡àÀëÐÄÂÊΪ=$\frac{2}{3}$£®
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÍÖÔ²µÄµÚ¶þ¶¨Ò壬ÀûÓÃÍÖÔ²µÄλÖùØÏµÊ±£¬¼ÆË㸴ÔÓ£¬ÊìÁ·ÕÆÎÕÍÖÔ²µÄµÚ¶þ¶¨Ò壬¿ÉÒÔ¼ò»¯¼ÆË㣬Ìá¸ß×öÌâËÙ¶È£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø