ÌâÄ¿ÄÚÈÝ
12£®Ò»¸ö¿Ú´üÖÐ×°ÓдóСÐÎ×´ÍêÈ«ÏàͬµÄn+3¸öƹÅÒÇò£¬ÆäÖÐ1¸öƹÅÒÇòÉϱêÓÐÊý×Ö1£¬2¸öƹÅÒÇòÉϱêÓÐÊý×Ö2£¬ÆäÓàn¸öƹÅÒÇòÉϾù±êÓÐÊý×Ö3£¨n¡ÊN*£©£¬Èô´ÓÕâ¸ö¿Ú´üÖÐËæ»úµØÃþ³ö2¸öƹÅÒÇò£¬Ç¡ÓÐÒ»¸öƹÅÒÇòÉϱêÓÐÊý×Ö2µÄ¸ÅÂÊÊÇ$\frac{8}{15}$£®£¨1£©ÇónµÄÖµ£»
£¨2£©´Ó¿Ú´üÖÐËæ»úµØÃþ³ö2¸öƹÅÒÇò£¬Éè¦Î±íʾËùÃþµ½µÄ2¸öƹÅÒÇòÉÏËù±êÊý×ÖÖ®ºÍ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®
·ÖÎö £¨1£©ÀûÓÃÌâÉèÌõ¼þÁгö·½³ÌÇó³önµÄÖµ£»
£¨2£©ÓÉÌâÉèÖª¦ÎȡֵΪ3£¬4£¬5£¬6£¬Çó³ö¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬$\frac{{C}_{n+1}^{1}{•C}_{2}^{1}}{{C}_{n+3}^{2}}$=$\frac{8}{15}$£¬
ÕûÀíµÃ2n2-5n-3=0£¬
½âµÃn=3»òn=-$\frac{1}{2}$£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£»
¡àn=3£»
£¨2£©ÓÉÌâÉèÖª¦ÎȡֵΪ3£¬4£¬5£¬6£»
P£¨¦Î=3£©=$\frac{{C}_{1}^{1}{•C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{2}{15}$£¬
P£¨¦Î=4£©=$\frac{{C}_{2}^{2}{+C}_{1}^{1}{•C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{4}{15}$£¬
P£¨¦Î=5£©=$\frac{{C}_{2}^{1}{•C}_{3}^{1}}{{C}_{6}^{2}}$=$\frac{6}{15}$=$\frac{2}{5}$£¬
P£¨¦Î=6£©=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{3}{15}$=$\frac{1}{5}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 3 | 4 | 5 | 6 |
| P | $\frac{2}{15}$ | $\frac{4}{15}$ | $\frac{2}{5}$ | $\frac{1}{5}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇó·¨ÎÊÌ⣬½âÌâʱҪעÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã¬ÊÇ×ÛºÏÌ⣮
| A£® | 1+i | B£® | 1-i | C£® | 2i | D£® | -2i |
| A£® | 1 | B£® | 5 | C£® | -3 | D£® | 0 |
| A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\frac{2}{3}$ |
| A£® | -$\frac{\sqrt{5}}{3}$ | B£® | -$\frac{\sqrt{2}}{3}$ | C£® | $\frac{\sqrt{5}}{3}$ | D£® | $\frac{\sqrt{2}}{3}$ |
| A£® | $\sqrt{3}$km | B£® | $\sqrt{2}$km | C£® | 1.5km | D£® | 2km |