题目内容

15.已知x,y为正实数,且x+y+$\frac{1}{x}$+$\frac{1}{y}$=5,则x+y的最大值是(  )
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

分析 两次利用基本不等式即可得出.

解答 解:∵x+y+$\frac{1}{x}$+$\frac{1}{y}$=5,
∴(x+y)[5-(x+y)]=(x+y)($\frac{1}{x}$+$\frac{1}{y}$)=2+$\frac{y}{x}$+$\frac{x}{y}$≥2+2=4,
∴(x+y)2-5(x+y)+4≤0,
∴1≤x+y≤4,
∴当且仅当x=y=2时,x+y取最大值4.
故选:C.

点评 本题考查了基本不等式的性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网