题目内容

已知方程x2+y2-2mx+2my-2=0表示的曲线恒过第三象限的一个定点A,若点A又在直线l:mx+ny+1=0上,则当正数m,n的乘积取得最大值时直线l的方程是
 
考点:直线和圆的方程的应用
专题:计算题
分析:先根据方程x2+y2-2mx+2my-2=0,确定第三象限的定点A的坐标,代入直线l:mx+ny+1=0上,利用基本不等式,可求正数m,n的乘积的最大值,故可求直线方程.
解答: 解:∵方程x2+y2-2mx+2my-2=0
∴x2+y2-2-2m(x-y)=0
解方程组
x2+y2-2=0
x-y=0

x=1
y=1
x=-1
y=-1

∵A在第三象限
∴A(-1,-1)
∵点A在直线l:mx+ny+1=0
∴m+n=1
∵m>0,n>0
mn≤(
m+n
2
)
2
=
1
4

当且仅当m=n=
1
2
时,正数m,n的乘积取得最大值
∴直线l:mx+ny+1=0为直线l:x+y+2=0
故答案为:x+y+2=0
点评:本题以圆的方程为载体,考查定点问题,考查基本不等式的运用,解题的关键是根据圆的方程确定定点的坐标.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网