ÌâÄ¿ÄÚÈÝ
1£®£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²EµÄÓÒ½¹µãΪF£¬¹ýµãG£¨2£¬0£©×÷бÂʲ»Îª0µÄÖ±Ïß½»ÍÖÔ²EÓÚM£¬NÁ½µã£¬ÉèÖ±ÏßFMºÍFNµÄбÂÊΪk1£¬k2£¬ÊÔÅжÏk1+k2ÊÇ·ñΪ¶¨Öµ£¬ÈôÊǶ¨Öµ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÐÔÖÊ2b=2£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬ÇóµÃa£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÇóµÃk1+k2µÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£º2b=2£¬b=1£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬
Ôòa=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x-2£©£¨k¡Ù0£©£®
$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨1+2k2£©x2-8k2x+8k2-2=0£®ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$£¬
k1+k2=$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$=$\frac{k£¨{x}_{1}-2£©}{{x}_{1}-1}$+$\frac{k£¨{x}_{2}-2£©}{{x}_{2}-1}$=k[2-$\frac{{x}_{1}+{x}_{2}-2}{{x}_{1}{x}_{2}-£¨{x}_{1}+{x}_{2}£©+1}$]
=k[2-$\frac{\frac{8{k}^{2}}{1+2{k}^{2}}-2}{\frac{8{k}^{2}-2}{1+2{k}^{2}}-\frac{8{k}^{2}}{1+2{k}^{2}}+1}$]=0
¡àk1+k2=0Ϊ¶¨Öµ£®![]()
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | ¦Ð | B£® | 3¦Ð | C£® | 5¦Ð | D£® | 7¦Ð |
| A£® | g£¨¦Ð£©£¼g£¨3£©£¼g£¨$\sqrt{2}$£© | B£® | g£¨¦Ð£©£¼g£¨$\sqrt{2}$£©£¼g£¨3£© | C£® | g£¨$\sqrt{2}$£©£¼g£¨3£©£¼g£¨¦Ð£© | D£® | g£¨$\sqrt{2}$£©£¼g£¨¦Ð£©£¼g£¨3£© |
| A£® | 12 | B£® | 18 | C£® | 24 | D£® | 36 |
£¨1£©ÈôÓ÷ֲã³éÑùµÄ·½·¨´ÓÕâ500ÈËÖгéÈ¡5È˵ijɼ¨½øÐзÖÎö£¬ÇóÆäÖгɼ¨ÎªÓÅÐãµÄѧÉúÈËÊý£»
£¨2£©ÔÚ£¨1£©ÖгéÈ¡µÄ5ÃûѧÉúÖУ¬ÒªËæ»ú³éÈ¡2ÃûѧÉú²Î¼Ó·ÖÎö×ù̸»á£¬ÇóÇ¡ÓÐ1È˳ɼ¨ÎªÓÅÐãµÄ¸ÅÂÊ£®
| Çø¼ä | ÈËÊý |
| [115£¬120£© | 25 |
| [120£¬125£© | a |
| [125£¬130£© | 175 |
| [130£¬135£© | 150 |
| [135£¬140£© | b |