题目内容
函数F(x)=(x2+
)n+(
+x)n(n是正整数) 在区间[
,2]上的最大值和最小值的积为 .
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| 2 |
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用,二项式定理
分析:运用二项式定理,将F(x)展开,合并得到,F(x)=
(x2n+
)+
(x2n-3+
)+…+
(x2n-3r+
)+…+
(xn+
),再令g(x)=xn+
(x>0),运用导数求出单调性和最值,
即可得到F(x)在[
,1)上递减,在(1,2]上递增,进而得到F(x)的最值,进而得到乘积.
| C | 0 n |
| 1 |
| x2n |
| C | 1 n |
| 1 |
| x2n-3 |
| C | r n |
| 1 |
| x2n-3r |
| C | n n |
| 1 |
| xn |
| 1 |
| xn |
即可得到F(x)在[
| 1 |
| 2 |
解答:
解:由二项式定理,可得,
(x2+
)n=
x2n+
x2n-2•
+…+
(x2)n-r(
)r+…+
.
(
+x)n=
(
)n+
(
)n-1x+…+
(
)n-rxr+…+
xn.
则F(x)=
(x2n+
)+
(x2n-3+
)+…+
(x2n-3r+
)
+…+
(xn+
),
令g(x)=xn+
(x>0),g′(x)=nxn-1-
=n•
,
g′(x)>0,即有x2n>1,即x>1;g′(x)<0,即有x2n<1,即0<x<1.
即有g(x)在(0,1)上递减,在(1,+∞)上递增,
则F(x)在[
,1)上递减,在(1,2]上递增,
即有x=1取最小值,且为2n+1,
由于F(
)=F(2)=(
)n+(
)n,且为最大值,
则最大值与最小值的积为:2n+1•[(
)n+(
)n]=2[9n+(
)n].
故答案为:2[9n+(
)n].
(x2+
| 1 |
| x |
| C | 0 n |
| C | 1 n |
| 1 |
| x |
| C | r n |
| 1 |
| x |
| C | n n |
| 1 |
| xn |
(
| 1 |
| x2 |
| C | 0 n |
| 1 |
| x2 |
| C | 1 n |
| 1 |
| x2 |
| C | r n |
| 1 |
| x2 |
| C | n n |
则F(x)=
| C | 0 n |
| 1 |
| x2n |
| C | 1 n |
| 1 |
| x2n-3 |
| C | r n |
| 1 |
| x2n-3r |
+…+
| C | n n |
| 1 |
| xn |
令g(x)=xn+
| 1 |
| xn |
| n |
| xn+1 |
| x2n-1 |
| xn+1 |
g′(x)>0,即有x2n>1,即x>1;g′(x)<0,即有x2n<1,即0<x<1.
即有g(x)在(0,1)上递减,在(1,+∞)上递增,
则F(x)在[
| 1 |
| 2 |
即有x=1取最小值,且为2n+1,
由于F(
| 1 |
| 2 |
| 9 |
| 2 |
| 9 |
| 4 |
则最大值与最小值的积为:2n+1•[(
| 9 |
| 2 |
| 9 |
| 4 |
| 9 |
| 2 |
故答案为:2[9n+(
| 9 |
| 2 |
点评:本题考查二项式定理及运用,考查导数的运用:判断单调性和求极值、最值,考查运算能力,属于难题.
练习册系列答案
相关题目
已知在直三棱柱ABC-A1B1C1中,棱AB,BC,BB1两两垂直且长度相等,点P在线段A1C1(包括端点A1,C1)上运动,直线BP与B1C所成角为θ,则θ的取值范围是( )
A、0<θ≤
| ||||
B、
| ||||
C、
| ||||
D、0<θ≤
|
设f(x)是偶函数,且在(0,+∞)内是增函数,有f(-3)=0,则(x-1)f(x-1)<0的解集是( )
| A、{x|-2<x<1或x>4} |
| B、{x|x<-2或x>4} |
| C、{x|x<-2或1<x<4} |
| D、{x|-2<x<1或1<x<4} |
已知sin(x-
)cos(x-
)=-
,则cos4x的值等于( )
| 3π |
| 4 |
| π |
| 4 |
| 1 |
| 4 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|