题目内容
已知数列{an}满足:a1=1,an+1•an+an+1-an=0
(Ⅰ)证明:数列{
}为等差数列,并求an;
(Ⅱ)设bn=an•an+2,求数列{bn}的前n项和Sn;
(Ⅲ)求证:
≤Sn<
.
(Ⅰ)证明:数列{
| 1 |
| an |
(Ⅱ)设bn=an•an+2,求数列{bn}的前n项和Sn;
(Ⅲ)求证:
| 1 |
| 3 |
| 3 |
| 4 |
考点:数列的求和,数列与不等式的综合
专题:证明题,等差数列与等比数列
分析:(Ⅰ)两边同除以anan+1,即得
-
=1,根据等差数列的定义,可得证,且求出an;
(Ⅱ)运用裂项相消求和,运用
=
(
-
),即可得到;
(Ⅲ)由(Ⅱ)得到数列{Sn}为递增数列,且得到Sn<
,即可得证.
| 1 |
| an+1 |
| 1 |
| an |
(Ⅱ)运用裂项相消求和,运用
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
(Ⅲ)由(Ⅱ)得到数列{Sn}为递增数列,且得到Sn<
| 3 |
| 4 |
解答:
(Ⅰ)证明:∵an+1•an+an+1-an=0,
∴1+
-
=0
即
-
=1
∴{
}为等差数列,
=1,
∴
=1+(n-1)×1=n,
∴an=
;
(Ⅱ)解:∵bn=
,
∴Sn=
+
+…+
=
(1-
+
-
+…+
-
)
=
(
-
)
=
-
;
(Ⅲ)证明:∵
>0,
∴Sn<
,
∵Sn-Sn-1=bn>0,
∴{Sn}为递增数列,
∴Sn≥S1=
,
∴
≤Sn<
.
∴1+
| 1 |
| an |
| 1 |
| an+1 |
即
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
∴an=
| 1 |
| n |
(Ⅱ)解:∵bn=
| 1 |
| n(n+2) |
∴Sn=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
(Ⅲ)证明:∵
| 2n+3 |
| 2(n+1)(n+2) |
∴Sn<
| 3 |
| 4 |
∵Sn-Sn-1=bn>0,
∴{Sn}为递增数列,
∴Sn≥S1=
| 1 |
| 3 |
∴
| 1 |
| 3 |
| 3 |
| 4 |
点评:本题主要考查数列的通项和求和,考查等差数列的通项求法,以及裂项相消求和方法,同时考查数列的单调性,是一道综合题.
练习册系列答案
相关题目