题目内容
设数列{an}的前n项和为Sn,且a1=1,nan+1=2Sn,n∈N*.
(1)求a2,a3,a4;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足:b1=
,bn+1=bn+
,试证明:当n∈N*时,必有①
-
<
;②bn<1.
(1)求a2,a3,a4;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足:b1=
| 1 |
| 2 |
| ||
|
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| (n+1)2 |
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列,点列、递归数列与数学归纳法
分析:(1)由递推公式逐个求得即可;
(2)利用公式法可得nan+1-(n-1)an=2(Sn-Sn-1)=2an即nan+1=(n+1)an,
=
,再利用累乘法即可求得数列的通项公式;
(3)先证得数列{bn}是正项单调递增数列,再由所以bn+1-bn<
,
<
即
-
<
,再有裂项相消法求得
,
>
+
-1=2+
-1=
>1,即bn<1(n≥2),故命题得证.
(2)利用公式法可得nan+1-(n-1)an=2(Sn-Sn-1)=2an即nan+1=(n+1)an,
| an+1 |
| an |
| n+1 |
| n |
(3)先证得数列{bn}是正项单调递增数列,再由所以bn+1-bn<
| bn+1bn |
| (n+1)2 |
| bn+1-bn |
| bn+1bn |
| 1 |
| (n+1)2 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| (n+1)2 |
| 1 |
| bn |
| 1 |
| bn |
| 1 |
| b1 |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
解答:
解:(1)由n=1,2,(3分)别代入递推式即可得a2=2,a3=3,a4=4…(3分)
(2)因为nan+1=2Sn,(n-1)an=2Sn-1,
所以nan+1-(n-1)an=2(Sn-Sn-1)=2an即nan+1=(n+1)an,
=
所以
•
•
…
=
•
•
…
,an=n(n∈N*).…(7分)
(3)①由(2)得b1=
,bn+1=bn+
>bn>bn-1>…>b1>0
所以{bn}是正项单调递增数列,…(8分)
当n∈N*时,bn+1=bn+
<bn+
,…(9分)
所以bn+1-bn<
,
<
即
-
<
.…(11分)
②由①得,当n≥2时,
-
<
,
-
<
,…,
-
<
所以(
-
)+(
-
)+…+(
-
)<
+
+…+
即
-
<
+
+…+
…(13分)
所以
-
<
+
+…+
=(
-
)+(
-
)+…+(
-
)=1-
…(14分)
所以
>
+
-1=2+
-1=
>1,即bn<1(n≥2)
又当n=1,b1=
<1…(15分)
故当n∈N*时,bn<1.
(2)因为nan+1=2Sn,(n-1)an=2Sn-1,
所以nan+1-(n-1)an=2(Sn-Sn-1)=2an即nan+1=(n+1)an,
| an+1 |
| an |
| n+1 |
| n |
所以
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n |
| n-1 |
(3)①由(2)得b1=
| 1 |
| 2 |
| ||
| (n+1)2 |
所以{bn}是正项单调递增数列,…(8分)
当n∈N*时,bn+1=bn+
| ||
| (n+1)2 |
| bn+1bn |
| (n+1)2 |
所以bn+1-bn<
| bn+1bn |
| (n+1)2 |
| bn+1-bn |
| bn+1bn |
| 1 |
| (n+1)2 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| (n+1)2 |
②由①得,当n≥2时,
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| 22 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| 32 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| n2 |
所以(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
即
| 1 |
| b1 |
| 1 |
| bn |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
所以
| 1 |
| b1 |
| 1 |
| bn |
| 1 |
| 2•1 |
| 1 |
| 3•2 |
| 1 |
| n•(n-1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
所以
| 1 |
| bn |
| 1 |
| b1 |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
又当n=1,b1=
| 1 |
| 2 |
故当n∈N*时,bn<1.
点评:本题主要考查递推公式求数列的通项公式,考查学生分析问题、解决问题的能力及运算求解能力,逻辑性强,属于难题.
练习册系列答案
相关题目