题目内容

12.函数f(x)=2sin(2x+$\frac{π}{6}$)的图象(  )
A.关于直线x=$\frac{π}{6}$对称B.关于直线x=-$\frac{π}{12}$对称
C.关于点($\frac{2π}{3}$,0)对称D.关于点(π,0)对称

分析 由条件利用正弦函数的图象的对称性,得出结论.

解答 解:对于函数f(x)=2sin(2x+$\frac{π}{6}$),令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
可得它的图象关于直线x=$\frac{kπ}{2}$+$\frac{π}{6}$对称,故排除B,选A.
令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
可得它的图象关于点($\frac{kπ}{2}$-$\frac{π}{12}$,0)对称,故排除C,D,
故选:A.

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网