题目内容

4.设△ABC的三内角A,B,C所对的边分别为a,b,c,已知(2b-c)cosA=acosC.
(1)求A;
(2)若a=1,求b+c的取值范围.

分析 (1)由(2b-c)cosA=acosC,利用正弦定理可得:2sinBcosA-sinCcosA=sinAcosC,化为2sinBcosA=sinB,可得cosA=$\frac{1}{2}$,即可得出A.
(2)由余弦定理可得:a2=b2+c2-2bccosA,化简再利用基本不等式的性质即可得出.

解答 解:(1)由(2b-c)cosA=acosC,利用正弦定理可得:2sinBcosA-sinCcosA=sinAcosC,
化为2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,
∵sinB≠0,可得cosA=$\frac{1}{2}$,A∈(0,π),
∴A=$\frac{π}{3}$.
(2)由余弦定理可得:a2=b2+c2-2bccosA=(b+c)2-2bc-2bccos$\frac{π}{3}$,
化为1=(b+c)2-3bc≥(b+c)2-$3×(\frac{b+c}{2})^{2}$=$\frac{1}{4}(b+c)^{2}$,b+c>1.当且仅当b=c时取等号.
解得1<b+c≤2,
∴b+c的取值范围是(1,2].

点评 本题考查了正弦定理余弦定理、基本不等式的性质、和差公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网