题目内容
(1)设a、b、c为正数,且满足a2+b2=c2.求log2(1+
)+log2(1+
)的值;
(2)解方程:log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1)
| b+c |
| a |
| a-c |
| b |
(2)解方程:log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1)
考点:对数的运算性质
专题:函数的性质及应用
分析:(1)log2(1+
)+log2(1+
)=log2[(1+
)(1+
)]=log2(
),由此能求出结果.
(2)由已知得log4
=log0.25
=log4
,从而
=
,由此能求出结果.
| b+c |
| a |
| a-c |
| b |
| b+c |
| a |
| a-c |
| b |
| 2ab+a2+b2-c2 |
| ab |
(2)由已知得log4
| 3-x |
| 1-x |
| 2x+1 |
| 3+x |
| x+3 |
| 2x+1 |
| 3-x |
| 1-x |
| x+3 |
| 2x+1 |
解答:
(1)∵a、b、c为正数,且满足a2+b2=c2.
∴log2(1+
)+log2(1+
)
=log2[(1+
)(1+
)]
=log2(
)
=log22=1.(6分)
(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1)log4
=log0.25
=log4
,
=
,
解得x=7或x=0,经检验x=0为所求,
∴x=0.(6分)
∴log2(1+
| b+c |
| a |
| a-c |
| b |
=log2[(1+
| b+c |
| a |
| a-c |
| b |
=log2(
| 2ab+a2+b2-c2 |
| ab |
=log22=1.(6分)
(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1)log4
| 3-x |
| 1-x |
| 2x+1 |
| 3+x |
| x+3 |
| 2x+1 |
| 3-x |
| 1-x |
| x+3 |
| 2x+1 |
解得x=7或x=0,经检验x=0为所求,
∴x=0.(6分)
点评:本题考查对数值的求法,考查对数方程的解法,解题时要认真审题,注意对数性质的合理运用.
练习册系列答案
相关题目