题目内容
已知平面向量
与
不共线,若存在非零实数x,y,使得
=
+2x
,
=-y
+2(2-x2)
.
(1)当
=
时,求x,y的值;
(2)若
=(cos
,sin(-
)),
=(sin
,cos
),且
⊥
,试求函数y=f(x)的表达式.
| a |
| b |
| c |
| a |
| b |
| d |
| a |
| b |
(1)当
| c |
| d |
(2)若
| a |
| π |
| 6 |
| π |
| 6 |
| b |
| π |
| 6 |
| π |
| 6 |
| c |
| d |
考点:平面向量数量积的运算,平行向量与共线向量
专题:平面向量及应用
分析:(1)由条件得:(1+y)
+(2x-4+2x2)
=
,∵向量
与
不共线,故
,解之即可;
(2)由条件可求|
|=|
|=1,
•
=0,
•
=(
+2x
)•[-y
+(4-2x2)
]=-y
2-2xy
•
+(4-2x2)
•
+2x(4-2x2)
2=-y+2x(4-2x2)=0,移项可得y的解析式.
| a |
| b |
| 0 |
| a |
| b |
|
(2)由条件可求|
| a |
| b |
| c |
| d |
| c |
| d |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
解答:
解:(1)由条件得:
+2x
=-y
+(4-2x2)
,
∴(1+y)
+(2x-4+2x2)
=
,
∵向量
与
不共线,
∴
,解得y=-1,x=1或x=-2.
(2)∵
•
=cos
sin
+sin(-
)cos
=0,∴
⊥
又∵
⊥
,∴
•
=0,又由条件可知,|
|=|
|=1
∴
•
=(
+2x
)•[-y
+(4-2x2)
]
=-y
2-2xy
•
+(4-2x2)
•
+2x(4-2x2)
2
=-y+2x(4-2x2)=0,∴y=8x-4x3,
即f(x)=8x-4x3
| a |
| b |
| a |
| b |
∴(1+y)
| a |
| b |
| 0 |
∵向量
| a |
| b |
∴
|
(2)∵
| a |
| b |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| a |
| b |
又∵
| c |
| d |
| c |
| d |
| a |
| b |
∴
| c |
| d |
| a |
| b |
| a |
| b |
=-y
| a |
| a |
| b |
| a |
| b |
| b |
=-y+2x(4-2x2)=0,∴y=8x-4x3,
即f(x)=8x-4x3
点评:本题为向量和三角函数的综合应用,用好数量积为0与向量垂直的等价关系是解决问题的关键,属中档题.
练习册系列答案
相关题目
若对任意的x∈R,函数f(x)满足f(x+1)=-f(x),且f(2013)=-2013,则f(-1)=( )
| A、1 | B、-1 |
| C、2013 | D、-2013 |