ÌâÄ¿ÄÚÈÝ

8£®ÒÑÖªÊýÁÐ{an}Âú×ãan=$\frac{{a}^{n+1}-{a}^{-n-1}}{a-{a}^{-1}}$£¨n¡ÊN*£©£¬a¡Ù-1£¬0£¬1£¬Éèb=a+$\frac{1}{a}$£®
£¨1£©ÇóÖ¤£ºan+1=ban-an-1£¨n¡Ý2£¬n¡ÊN*£©£»
£¨2£©µ±n£¨n¡ÊN*£©ÎªÆæÊýʱ£¬an=$\sum_{i=0}^{\frac{n-1}{2}}£¨-1£©^{i}$C${\;}_{n-1}^{i}$bn-2i£¬²ÂÏëµ±n£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬an¹ØÓÚbµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

·ÖÎö £¨1£©×÷²îÖ¤Ã÷¼´¿É£¬
£¨2£©²ÂÏëanµÄ±í´ïʽ£¬ÀûÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½Öè½øÐÐÖ¤Ã÷£®

½â´ð Ö¤Ã÷£¨1£©ban-an-1=$\frac{£¨a+{a}^{-1}£©£¨{a}^{n+1}-{a}^{-n-1}£©}{a-{a}^{-1}}$-$\frac{{a}^{n}-{a}^{-n}}{a-{a}^{-1}}$=$\frac{{a}^{n+2}-{a}^{-n-2}}{a-{a}^{-1}}$=an+1£¬
£¨2£©²ÂÏën£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬ÓÐan=$£¨-1£©^{i}{C}_{n-i}^{i}{b}^{n-2i}$£»
ÏÂÃæÍ¬Êýѧ¹éÄÉ·¨Ö¤Ã÷Õâ¸ö²ÂÏ룬
¢Ùµ±n=2ʱ£¬a2=$\frac{{a}^{3}-{a}^{-3}}{a-{a}^{-1}}$=a2+a+a-2=£¨a+$\frac{1}{a}$£©2-1=b2-1£¬½áÂÛ³ÉÁ¢£¬
¢Ú¼ÙÉèµ±n=kʱ£¨kΪżÊý£©Ê±£¬½áÂÛ³ÉÁ¢£¬
¼´ak=£¨-1£©i${C}_{k-i}^{i}$b-2i=bk-${C}_{k-1}^{1}{b}^{k-2}$+¡­+$£¨-1£©^{i}{C}_{k}^{i}{b}^{k-2i}$+¡­+$£¨-1£©^{\frac{k}{2}}$£®´Ëʱk+ÎªÆæÊý£¬
¡àak+1=$£¨-1£©^{i}{C}_{k+1-i}^{i}$bk+1-2i=bk+1-${C}_{k+1}^{1}{b}^{k-1}$+¡­+$£¨-1£©^{i}{C}_{k+1-i}^{i}{b}^{k+1-2i}$+¡­+$£¨-1£©^{\frac{k}{2}}{C}_{\frac{k+2}{2}}^{\frac{k}{2}}b$£¬
µ±n=k+2£¨kΪżÊýʱ£©£¬
ak+2=bak+1-ak=[${b}^{k+2}-{C}_{k}^{1}{b}^{k}+¡­+$$£¨-1£©^{i}{C}_{k+1-i}^{i}{b}^{k+2-2i}$+¡­+$£¨-1£©^{\frac{k}{2}}$${C}_{\frac{k+2}{2}}^{\frac{k}{2}}$b2]-[${b}^{k}-{C}_{k-1}^{1}{b}^{k-2}$+¡­+$£¨-1£©^{i}{C}_{k-i}^{i}{b}^{k-2i}$+¡­+$£¨-1£©^{\frac{k}{2}}$]£¬
=bk+2-bk+¡­+$£¨-1£©^{i}£¨{C}_{k+1-i}^{i}+$${C}_{k-£¨i-1£©}^{i-1}$£©bk+2-2ibk+2-2i+¡­+$£¨-1£©^{\frac{k+2}{2}}$£¬
=bk+2-bk+¡­+$£¨-1£©^{i}{C}_{k+2-i}^{i}$bk+2-2i+¡­+$£¨-1£©^{\frac{k+2}{2}}$£¬
=$£¨-1£©^{i}{C}_{k+2-i}^{i}{b}^{k+2-2i}$£¬½áÂÛÒ²³ÉÁ¢£¬
¸ù¾Ý¢Ù¢Ú£¬¿ÉÖªµ±n£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬¾ùÓÐan=$£¨-1£©^{i}{C}_{n-i}^{i}{b}^{n-2i}$

µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨£¬¿¼²é²ÂÏëÓëÖ¤Ã÷£¬ÕýÈ·ÔËÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½ÖèÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø