ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÊýÁÐ{an}Âú×ãan=$\frac{{a}^{n+1}-{a}^{-n-1}}{a-{a}^{-1}}$£¨n¡ÊN*£©£¬a¡Ù-1£¬0£¬1£¬Éèb=a+$\frac{1}{a}$£®£¨1£©ÇóÖ¤£ºan+1=ban-an-1£¨n¡Ý2£¬n¡ÊN*£©£»
£¨2£©µ±n£¨n¡ÊN*£©ÎªÆæÊýʱ£¬an=$\sum_{i=0}^{\frac{n-1}{2}}£¨-1£©^{i}$C${\;}_{n-1}^{i}$bn-2i£¬²ÂÏëµ±n£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬an¹ØÓÚbµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
·ÖÎö £¨1£©×÷²îÖ¤Ã÷¼´¿É£¬
£¨2£©²ÂÏëanµÄ±í´ïʽ£¬ÀûÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½Öè½øÐÐÖ¤Ã÷£®
½â´ð Ö¤Ã÷£¨1£©ban-an-1=$\frac{£¨a+{a}^{-1}£©£¨{a}^{n+1}-{a}^{-n-1}£©}{a-{a}^{-1}}$-$\frac{{a}^{n}-{a}^{-n}}{a-{a}^{-1}}$=$\frac{{a}^{n+2}-{a}^{-n-2}}{a-{a}^{-1}}$=an+1£¬
£¨2£©²ÂÏën£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬ÓÐan=$£¨-1£©^{i}{C}_{n-i}^{i}{b}^{n-2i}$£»
ÏÂÃæÍ¬Êýѧ¹éÄÉ·¨Ö¤Ã÷Õâ¸ö²ÂÏ룬
¢Ùµ±n=2ʱ£¬a2=$\frac{{a}^{3}-{a}^{-3}}{a-{a}^{-1}}$=a2+a+a-2=£¨a+$\frac{1}{a}$£©2-1=b2-1£¬½áÂÛ³ÉÁ¢£¬
¢Ú¼ÙÉèµ±n=kʱ£¨kΪżÊý£©Ê±£¬½áÂÛ³ÉÁ¢£¬
¼´ak=£¨-1£©i${C}_{k-i}^{i}$b-2i=bk-${C}_{k-1}^{1}{b}^{k-2}$+¡+$£¨-1£©^{i}{C}_{k}^{i}{b}^{k-2i}$+¡+$£¨-1£©^{\frac{k}{2}}$£®´Ëʱk+ÎªÆæÊý£¬
¡àak+1=$£¨-1£©^{i}{C}_{k+1-i}^{i}$bk+1-2i=bk+1-${C}_{k+1}^{1}{b}^{k-1}$+¡+$£¨-1£©^{i}{C}_{k+1-i}^{i}{b}^{k+1-2i}$+¡+$£¨-1£©^{\frac{k}{2}}{C}_{\frac{k+2}{2}}^{\frac{k}{2}}b$£¬
µ±n=k+2£¨kΪżÊýʱ£©£¬
ak+2=bak+1-ak=[${b}^{k+2}-{C}_{k}^{1}{b}^{k}+¡+$$£¨-1£©^{i}{C}_{k+1-i}^{i}{b}^{k+2-2i}$+¡+$£¨-1£©^{\frac{k}{2}}$${C}_{\frac{k+2}{2}}^{\frac{k}{2}}$b2]-[${b}^{k}-{C}_{k-1}^{1}{b}^{k-2}$+¡+$£¨-1£©^{i}{C}_{k-i}^{i}{b}^{k-2i}$+¡+$£¨-1£©^{\frac{k}{2}}$]£¬
=bk+2-bk+¡+$£¨-1£©^{i}£¨{C}_{k+1-i}^{i}+$${C}_{k-£¨i-1£©}^{i-1}$£©bk+2-2ibk+2-2i+¡+$£¨-1£©^{\frac{k+2}{2}}$£¬
=bk+2-bk+¡+$£¨-1£©^{i}{C}_{k+2-i}^{i}$bk+2-2i+¡+$£¨-1£©^{\frac{k+2}{2}}$£¬
=$£¨-1£©^{i}{C}_{k+2-i}^{i}{b}^{k+2-2i}$£¬½áÂÛÒ²³ÉÁ¢£¬
¸ù¾Ý¢Ù¢Ú£¬¿ÉÖªµ±n£¨n¡ÊN*£©ÎªÅ¼Êýʱ£¬¾ùÓÐan=$£¨-1£©^{i}{C}_{n-i}^{i}{b}^{n-2i}$
µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨£¬¿¼²é²ÂÏëÓëÖ¤Ã÷£¬ÕýÈ·ÔËÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷²½ÖèÊǹؼü£®
| ÈÕÆÚ | 7ÔÂ15ÈÕ | 8ÔÂ15ÈÕ | 9ÔÂ15ÈÕ | 10ÔÂ15ÈÕ | 11ÔÂ15ÈÕ | 12ÔÂ15ÈÕ |
| ÉãÊÏζÈx£¨¡æ£© | 36 | 35 | 30 | 24 | 18 | 8 |
| ÒûÁϱÊýy | 27 | 29 | 24 | 18 | 15 | 5 |
£¨1£©Çóѡȡ2×éÊý¾ÝÇ¡ºÃÊÇÏàÁÚµÄÁ½¸öÔµĸÅÂÊ£»
£¨2£©ÈôÑ¡ÖеÄÊÇ8ÔÂÓë12ÔµÄÁ½×éÊý¾Ý£¬¸ù¾ÝʣϵÄ4×éÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\hat y=bx+\hat a$£®
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïß$\hat a=\overline y-\hat b\overline x$µÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º$b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£®
| A£® | £¨-3£¬1£© | B£® | £¨-2£¬1£© | C£® | £¨-$\sqrt{5}$£¬2£© | D£® | £¨-2£¬$\sqrt{5}$£© |