ÌâÄ¿ÄÚÈÝ
20£®ÓÐÒ»Ãûͬѧ¼Ò¿ªÁËÒ»¸öСÂô²¿£¬ËûΪÁËÑо¿ÆøÎ¶ÔijÖÖÒýÁìÏúÊÛµÄÓ°Ï죬¼Ç¼ÁË2015Äê7ÔÂÖÁ12ÔÂÿÔÂ15ºÅÏÂÎç14ʱµÄÆøÎº͵±ÌìÂô³öµÄÒûÁϱÊý£¬µÃµ½ÈçÏÂ×ÊÁÏ£º| ÈÕÆÚ | 7ÔÂ15ÈÕ | 8ÔÂ15ÈÕ | 9ÔÂ15ÈÕ | 10ÔÂ15ÈÕ | 11ÔÂ15ÈÕ | 12ÔÂ15ÈÕ |
| ÉãÊÏζÈx£¨¡æ£© | 36 | 35 | 30 | 24 | 18 | 8 |
| ÒûÁϱÊýy | 27 | 29 | 24 | 18 | 15 | 5 |
£¨1£©Çóѡȡ2×éÊý¾ÝÇ¡ºÃÊÇÏàÁÚµÄÁ½¸öÔµĸÅÂÊ£»
£¨2£©ÈôÑ¡ÖеÄÊÇ8ÔÂÓë12ÔµÄÁ½×éÊý¾Ý£¬¸ù¾ÝʣϵÄ4×éÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\hat y=bx+\hat a$£®
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïß$\hat a=\overline y-\hat b\overline x$µÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º$b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£®
·ÖÎö £¨1£©ÀûÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËã³ö¶ÔÓ¦µÄ¸ÅÂÊÖµ£»
£¨2£©¸ù¾ÝÊý¾Ý¼ÆËã³ö$\overline{x}$¡¢$\overline{y}$Óë$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬¼´¿Éд³öÏßÐԻع鷽³Ì£®
½â´ð ½â£º£¨1£©´ÓÕâÁù×éÊý¾ÝÖÐѡȡ2×飬¹²ÓÐ15ÖֵȿÉÄÜÇé¿ö£¬·Ö±ðΪ
£¨7£¬8£©£¬£¨7£¬9£©£¬£¨7£¬10£©£¬£¨7£¬11£©£¬£¨7£¬12£©£¬
£¨8£¬9£©£¬£¨8£¬10£©£¬£¨8£¬11£©£¬£¨8£¬12£©£¬
£¨9£¬10£©£¬£¨9£¬11£©£¬£¨9£¬12£©£¬
£¨10£¬11£©£¬£¨10£¬12£©£¬£¨11£¬12£©£»
ÆäÖÐѡȡ2×éÊý¾ÝÇ¡ºÃÊÇÏàÁÚÁ½¸öÔÂÓÐ5ÖÖÇé¿ö£¬·Ö±ðΪ
£¨7£¬8£©£¬£¨8£¬9£©£¬£¨9£¬10£©£¬£¨10£¬11£©£¬£¨11£¬12£©£»
¹Êѡȡ2×éÊý¾ÝÇ¡ºÃÊÇÏàÁÚÁ½¸öÔµĸÅÂÊΪ$\frac{5}{15}$=$\frac{1}{3}$£»
£¨2£©¼ÆËã$\overline{x}$=$\frac{1}{4}$¡Á£¨26+30+24+18£©=27£¬
$\overline{y}$=$\frac{1}{4}$¡Á£¨27+24+18+15£©=21£¬
ËùÒÔ$\stackrel{¡Ä}{b}$=$\frac{£¨26-27£©£¨27-21£©+¡+£¨18-27£©£¨15-21£©}{{£¨26-27£©}^{2}+¡{+£¨18-21£©}^{2}}$¡Ö0.7£¬
$\stackrel{¡Ä}{a}$=21-0.7¡Á27=2.1£»
ËùÒÔy¹ØÓÚxµÄÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=0.7x+2.1£®
µãÆÀ ±¾Ì⿼²éÁËÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬Ҳ¿¼²éÁËÇóÏßÐԻع鷽³ÌµÄÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | 4 | B£® | 5 | C£® | 1 | D£® | 2 |
| A£® | $£¨{\frac{4}{3}£¬2}]$ | B£® | $£¨{-¡Þ£¬0}£©¡È£¨{\frac{4}{3}£¬+¡Þ}£©$ | C£® | £¨-¡Þ£¬0£© | D£® | $£¨{-¡Þ£¬0}£©¡È£¨{\frac{4}{3}£¬2}£©$ |