ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ýÔµãµÄÁ½ÌõÖ±Ïßl1ºÍl2·Ö±ðÓ릣½»ÓÚµãA¡¢BºÍC¡¢D£¬µÃµ½Æ½ÐÐËıßÐÎACBD£®£¨1£©µ±ACBDΪÕý·½ÐÎʱ£¬Çó¸ÃÕý·½ÐεÄÃæ»ýS£»
£¨2£©ÈôÖ±Ïßl1ºÍl2¹ØÓÚyÖá¶Ô³Æ£¬¦£ÉÏÈÎÒâÒ»µãPµ½l1ºÍl2µÄ¾àÀë·Ö±ðΪd1ºÍd2£¬µ±d12+d22Ϊ¶¨ÖµÊ±£¬Çó´ËʱֱÏßl1ºÍl2µÄбÂʼ°¸Ã¶¨Öµ£®
£¨3£©µ±ACBDΪÁâÐΣ¬ÇÒÔ²x2+y2=1ÄÚÇÐÓÚÁâÐÎACBDʱ£¬Çóa£¬bÂú×ãµÄ¹ØÏµÊ½£®
·ÖÎö £¨1£©Í¨¹ýACBDΪÕý·½ÐοÉÖªÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬½ø¶øÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓöԳÆÐÔ¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬ÉèP£¨x0£¬y0£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬ÕûÀí¿ÉÖª${{d}_{1}}^{2}$+${{d}_{2}}^{2}$µÄ±í´ïʽ£¬½ø¶øÀûÓÃd12+d22Ϊ¶¨Öµ¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ýÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬ÁªÁ¢ÇÐÏßACµÄ·½³ÌÓëÍÖÔ²·½³Ì£¬·Öx0=0»òy0=0¡¢x0¡Ù0»òy0¡Ù0Á½ÖÖÇé¿öÌÖÂÛ¼´¿É£®
½â´ð ½â£º£¨1£©¡ßACBDΪÕý·½ÐΣ¬
¡àÖ±Ïßl1ºÍl2µÄ·½³ÌΪy=xºÍy=-x£¬
ÉèµãA¡¢BµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬µÃ${{x}_{1}}^{2}$=${{x}_{2}}^{2}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£¬
ÓɶԳÆÐÔ¿ÉÖª£¬S=4${{x}_{1}}^{2}$=$\frac{4{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨2£©ÓÉÌâÒ⣬²»·ÁÉèÖ±Ïßl1µÄ·½³ÌΪy=kx£¬ÔòÖ±Ïßl2µÄ·½³ÌΪy=-kx£¬
ÉèP£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬
ÓÖ¡ßd1=$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬d2=$\frac{|k{x}_{0}+{y}_{0}|}{\sqrt{1+{k}^{2}}}$£¬
¡à${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{£¨k{x}_{0}-{y}_{0}£©^{2}}{1+{k}^{2}}$+$\frac{£¨k{x}_{0}+{y}_{0}£©^{2}}{1+{k}^{2}}$=$\frac{2{k}^{2}{{x}_{0}}^{2}+2{{y}_{0}}^{2}}{1+{k}^{2}}$£¬
½«${{y}_{0}}^{2}$=b2£¨1-$\frac{{{x}_{0}}^{2}}{{a}^{2}}$£©´úÈëÉÏʽ£¬
µÃ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2£¨{k}^{2}-\frac{{b}^{2}}{{a}^{2}}£©{{x}_{0}}^{2}+2{b}^{2}}{1+{k}^{2}}$£¬
¡ßd12+d22Ϊ¶¨Öµ£¬
¡àk2-$\frac{{b}^{2}}{{a}^{2}}$=0£¬¼´k=¡À$\frac{b}{a}$£¬
ÓÚÊÇÖ±Ïßl1ºÍl2µÄбÂÊ·Ö±ðΪ$\frac{b}{a}$ºÍ-$\frac{b}{a}$£¬´Ëʱ${{d}_{1}}^{2}$+${{d}_{2}}^{2}$=$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£»
£¨3£©ÉèACÓëÔ²x2+y2=1ÏàÇеÄÇеã×ø±êΪ£¨x0£¬y0£©£¬
ÔòÇÐÏßACµÄ·½³ÌΪ£ºx0x+y0y=1£¬
µãA¡¢CµÄ×ø±êΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©Îª·½³Ì×é$\left\{\begin{array}{l}{{x}_{0}x+{y}_{0}y=1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$µÄʵÊý½â£®
¢Ùµ±x0=0»òy0=0ʱ£¬ACBD¾ùΪÕý·½ÐΣ¬
ÍÖÔ²¾ù¹ýµã£¨1£¬1£©£¬ÓÚÊÇÓÐ$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
¢Úµ±x0¡Ù0»òy0¡Ù0ʱ£¬½«y=$\frac{1}{{y}_{0}}$£¨1-x0x£©´úÈë$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÕûÀíµÃ£º£¨a2${{x}_{0}}^{2}$+b2${{y}_{0}}^{2}$£©x2-2a2x0x-a2£¨1+b2${{y}_{0}}^{2}$£©=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖªx1x2=$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
ͬÀí¿ÉÖªy1y2=$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$£¬
¡ßACBDΪÁâÐΣ¬
¡àAO¡ÍCO£¬¼´x1x2+y1y2=0£¬
¡à$\frac{{a}^{2}£¨1-{b}^{2}{{y}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$+$\frac{{b}^{2}£¨1-{a}^{2}{{x}_{0}}^{2}£©}{{a}^{2}{{x}_{0}}^{2}+{b}^{2}{{y}_{0}}^{2}}$=0£¬
ÕûÀíµÃ£ºa2+b2=a2b2£¨${{x}_{0}}^{2}$+${{y}_{0}}^{2}$£©£¬
ÓÖ¡ß${{x}_{0}}^{2}$+${{y}_{0}}^{2}$=1£¬
¡àa2+b2=a2b2£¬¼´$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£»
×ÛÉÏËùÊö£¬a£¬bÂú×ãµÄ¹ØÏµÊ½Îª$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
ijͬѧº®¼ÙÆÚ¼ä¶ÔÆä30λÇ×ÊôµÄÒûʳϰ¹ß½øÐÐÁËÒ»´Îµ÷²é£¬ÁгöÁËÈçÏÂ
ÁÐÁª±í£º
Æ«°®Êß²Ë | Æ«°®ÈâÀà | ºÏ¼Æ | |
50ËêÒÔÏÂ | 4 | 8 | 12 |
50ËêÒÔÉÏ | 16 | 2 | 18 |
ºÏ¼Æ | 20 | 10 | 30 |
Ôò¿ÉÒÔ˵ÆäÇ×ÊôµÄÒûʳϰ¹ßÓëÄêÁäÓйصİÑÎÕΪ£¨ £©
A£®90% B£®95% C£®99% D£®99.9%
¸½£º²Î¿¼¹«Ê½ºÍÁÙ½çÖµ±í
![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
| A£® | [-2£¬2] | B£® | £¨-¡Þ£¬-2]¡È[2£¬+¡Þ£© | C£® | [-$\frac{1}{2}$£¬$\frac{1}{2}$] | D£® | £¨-¡Þ£¬-$\frac{1}{2}$]¡È[$\frac{1}{2}$£¬+¡Þ£© |